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ABSTRACT
Climate change and natural hazards pose great threats to road
transport systems which are ‘lifelines’ of human society. However,
there is generally a lack of empirical data and approaches for
assessing resilience of road networks in real hazard events. This
study introduces an empirical approach to evaluate road network
resilience using crowdsourced traffic data in Google Maps. Based on
the conceptualization of resilience and the Hansen accessibility
index, resilience of road network is measured from accumulated
accessibility reduction over time during a hazard. The utility of this
approach is demonstrated in a case study of the Cleveland metro-
politan area (Ohio) in Winter Storm Harper. The results reveal strong
spatial variations of the disturbance and recovery rate of road net-
work performance during the hazard. Themajor findings of the case
study are: (1) longer distance travels have higher increasing ratios of
travel time during the hazard; (2) communities with low accessibil-
ity at the normal condition have lower road network resilience; (3)
spatial clusters of low resilience are identified, including commu-
nities with low socio-economic capacities. The introduced approach
provides ground-truth validation for existing quantitative models
and supports disaster management and transportation planning to
reduce hazard impacts on road network.
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1. Introduction

Road transport systems are ‘lifeline’ systems providing fundamental support for national
security, economy, public welfare and individuals’ daily activities. Disruptions of road
transport systems can lead to significant socio-economic impacts. Due to the changing
climate and increasing extreme weather events, much attention has been paid to the
vulnerability and resilience of road transportation systems to the environmental stressors.
Ample evidence shows that extreme weather events can cause significant disruptions to
the performance of road networks (Koetse and Rietveld 2009), which affect people’s
accessibility to employment, shopping, health care, and emergency services. For example,
a winter storm can cause billions of dollars’ economic loss (National Oceanic and
Atmospheric Administration (NOAA) 2018; Smith and Katz 2013), a large proportion of
which is due to reduced performance of road networks (Fortune 2016). The impacts of
hazards on road networks are various in space and time, depending on the physical
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properties of road networks and a variety of environmental and socio-economic factors. It
is of crucial importance to understand the complex interplay among the various factors
and develop actionable metrics of road network resilience to guide planning, mitigation
and emergency management.

Despite the available studies on measuring vulnerability and resilience of transport
systems (will be reviewed in Section 2), there is a general lack of empirical methods for
measuring resilience of road network in hazardous weather conditions. This issue is
largely attributed to the challenge of collecting real-time and location-based traffic data
using traditional means (e.g. traffic sensors or counters installed on roads). With the
advent of Web 2.0, interactive web-map services (e.g. Google Maps® and Bing Maps®)
are becoming platforms where numerous travelers acquire and share information at any
time in any place. In addition to providing routing services to travelers, these crowd-
sourced data create unique opportunities to monitor dynamic performance of road net-
work in hazardous weather events and to obtain empirical knowledge about road
network resilience.

This study introduces an innovative approach that utilizes mobility data crowdsourced
in Google Maps® to analyze resilience of road network. Using travel times collected at a
sequence of times during a weather event, dynamics of accessibility to critical facilities
can be calculated for specific locations. Based on a conceptual framework of resilience,
a novel approach is introduced to assess resilience of road network from accumulated
accessibility reduction during the hazard. The utility of this approach is demonstrated in
a case study of winter storm. The introduced approach fills the critical gap of empirical
assessments for road network resilience in real hazard events. It helps to reveal the spatial
variance of accessibility disturbance and the recovery rate of road networks during the
hazards. The location-based resilience metric can provide actionable information for
disaster management and transportation planning to mitigate hazard impacts on road
transport systems.

The rest of the article is organized as follows: Section 2 presents a literature review of
related studies and points out the current research gaps. Section 3 refines the conceptual
framework of resilience and introduce the measurement method for road network
resilience. Section 4 describes the process of data collection using Google Maps APIs
and the settings in the case study of Cleveland, OH in Winter Storm Harper. Section 5
presents the analysis results in the case study. Section 6 discusses the implications,
limitations and future directions.

2. Related work

As reviewed by Koetse and Rietveld (2009), abundant studies have been conducted to
understand the impacts of hazardous weather conditions on road transport systems.
Abundant evidence shows precipitation events can cause reduction of traffic speed in
road networks. According to a report by Federal Highway Administration (1977), traffic
speed reduces by 22% in a wet road condition and the reduction can reach to 42% in
a snowy condition. The impact of weather on traffic speed has been confirmed in a series
of subsequent studies (Ibrahim and Hall 1994, Martin et al. 2000, Hranac et al. 2006, Maze
et al. 2006). Furthermore, Sabir et al. (2008) estimated that rain may cause € 0.88 welfare
loss per commuting trip in the Netherlands due to increased travel time on road. In
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addition to traffic speed, precipitation events may also affect accident frequency (Edwards
1996, Eisenberg 2004, Chung et al. 2005) and severity (Khattak et al. 1998, Andrey et al.
2003, Eisenberg and Warner 2005), traffic volume (Hanbali and Kuemmel 1993, Knapp
et al. 2000) and individuals’ travel behaviors (Aaheim and Hauge 2005).

The concept of vulnerability was introduced to describe the susceptibility of road
networks to incidents that can result in reduction in road network serviceability (Berdica
2002). Vulnerability of road networks is commonly measured by the reduction of acces-
sibility due to hypothetical disruptions or failures in the network (e.g. Berdica and Eliasson
2004, Husdal 2004, Sohn 2006, Taylor et al. 2006, Chen et al. 2007). As the principal service
provided by road transport systems, accessibility is defined as ‘the potential of opportu-
nities for interaction’ (Hansen 1959) or ‘the ease with which any land-use activity can be
reached from a location using a particular transport system’ (Dalvi and Martin 1976).
Accessibility is a deep-seated concept in geography and urban planning, which plays
a central role in studying the interactions among land use, transport systems and people
(Kwan 2013, Neutens 2015). For vulnerability assessment, accessibility is often used as
a proxy to estimate hazard impacts on transport serviceability and identify critical links the
loss of which may lead to significant socio-economic consequences (Taylor and Susilawati
2012, Jenelius and Mattsson 2015).

Another related concept is resilience, which is sometimes considered the opposite of
vulnerability. With an origin in ecological research, resilience expresses the capacity of
systems to absorb disturbances and return to pre-disaster condition or a new equilibrium
(Holling 1996, Adger et al. 2005). In the field of transportation, the definition of resilience
includes the ability of resisting and absorbing disturbances (i.e. resistance) and the ability
of adapting to disruptions, and returning to normal functionalities (i.e. recovery)
(Faturechi and Miller-Hooks 2014a, Calvert and Snelder 2018). Resilience of road transport
system is dependent on both the inherent capacity of the system in coping with dis-
turbance and adaptive actions taken by humans that help the system to restore perfor-
mance (Faturechi and Miller-Hooks 2014b). Despite the available studies of resilience in
the broad area of transportation (e.g. Chen and Miller-Hooks 2011, Cox et al. 2011, Ishfaq
2012), quantitative assessment approaches for road network resilience are relatively rare.
Noticeable contributions include the stochastic framework developed by Faturechi and
Miller-Hooks (2014b), which can be used to quantify and optimize travel time resilience in
roadway networks, and the Link Performance Index for Resilience by Calvert and Snelder
(2018), which evaluates the resilience of individual road sections. Both of the frameworks
are theory-driven, predicting resilience of road networks using mathematical models with
presumed network properties and traffic conditions.

There are a few issues that have not been well addressed in current approaches for
road network vulnerability and resilience. First, few empirical approaches are available for
evaluating road network vulnerability or resilience in real disaster events. The existing
approaches (e.g. Taylor et al. 2006, Miller-Hooks et al. 2012) are primarily based on
simulation models, predicting the potential degradation of network performance in
hypothetical hazardous conditions. However, the actual performance of road networks
in real hazard events is dynamic and complex, dependent on not only physical network
properties (e.g. topology, road type and capacity) (Hooper et al. 2013), but also environ-
mental (e.g. weather and topography) (Pregnolato et al. 2017) and human factors (e.g.
mitigation, emergency management and individuals’ travel behavior) (Zheng and Ling
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2013, Jacobsen et al. 2016). Empirical observations of road network performance are
needed to validate the predictions of the theory-based models and unravel the complex
interplays among the various factors. Second, most existing approaches provide a system-
level assessment of the entire network (e.g. Cox et al. 2011) or sections of the network
(Adams et al. 2011). Few studies provide location-specific metrics from a community’s or
individual’s perspective. Resilience assessments at a fine spatial scale can provide more
specific and actionable guidance for improving road network resilience and disaster
management in different areas with diverse environmental and socio-economic
conditions.

3. Measurement framework

According to the notion of resilience including resistance and recovery, resilience of road
networks should be measured from both the reduction of performance due to distur-
bance and the speed of recovering to normal performance. Figure 1 illustrates four
simplified scenarios of system performance during a hazard. Figure 1(a) can be ranked
as low resilience due to both the large performance reduction (low resistance) and the
slow recovery. In the other extreme, Figure 1(d) represent a high-resilience scenario where
the system has a small performance reduction (high resistance) and fast recovery.
However, the in-between situations are difficult to compare, as they are paired with either
low resistance and faster recovery (e.g. Figure 1(b)) or high resistance and slow recovery
(e.g. Figure 1(c)). The dynamics of road performance can be more complex than the
scenarios in Figure 1 and include several reduction troughs or different recovery speeds at
different phases. Such complex patterns cannot be measured by a simple combination of
the maximum disturbance and average recovery speed.

In this study, the resilience of a road transport system is measured by the accumulated
reduction of road network performance during a hazard process, which can be repre-
sented as the difference (gray area in Figure 1) between actual performance in the hazard
and benchmark performance at the normal condition. The accumulated reduction is
dependent on both the extent of performance reduction (indicating resistance) and the
lasting time of the reduction (indicating recovery). Not only the extreme situations (e.g.
Figure 1(a,d)), intermediate conditions (e.g. Figure 1(b,c)) and more complex patterns can
be differentiated. Assuming road network performance during a hazard can be modelled
as a function over time, resilience (R) can be calculated as the integral of the performance
function f xð Þ from the time when the performance decline below the normal condition

Figure 1. Possible scenarios of road network performance in a hazard. (a): a low-resilience scenario.
(b-c): the intermediate resilience scenarios, (d): a high-resilience scenario.
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(t1) to the time when the accessibility restores to the normal condition (t2) (see
Equation 1).

R ¼
ðt2
t1

f xð Þdx (1)

The Hansen accessibility index (Hansen 1959) is used as the indicator of road network
performance. This index provides an overall measure of the accessibility from one location
to a number of destinations. The original equation of the Hansen accessibility index can
be written as:

Ai ¼
P

j wjf cij
� �

P
j wj

(2)

where f cij
� �

is the ease from location i to destination j. f cij
� �

is negatively related with the
travel cost (e.g. travel time) from i to j, which is denoted as c ij. wj is the attractiveness of
destination j. In the introduced approach, travel cost cij is calculated as the reciprocal of
travel time xij from location i to a nearby facility j . The attractiveness coefficients (wj) is
considered equal for all nearby facilities. Other weighting schemes can be applied when
the relative importance among the facilities can be determined. Thus, the Hansen acces-
sibility can be adapted as:

Ai ¼ 1
n
�
Xn
j¼1

1
xij

(3)

where xij is the normalized travel time from Location i to Facility j. n is the number of
nearby facilities of Location i. By comparing the actual Hansen index and benchmark
Hansen index over time, the accumulated reduction of accessibility can be calculated as:

RAi ¼
ðt2
t1

A0
i tð Þ � Ai tð Þð Þ
A0

i tð Þ
� �

dt (4)

where Ai tð Þ and A0
i tð Þ are the actual and benchmark Hansen index at Location i and Time t.

RAi is the accumulated reduction ratio of the Hansen index from t1 to t2. Road network
resilience (Ri) is negatively proportional to the normalized value of RAi, which is calcu-
lated as:

Ri ¼ 1� RAi

max RAð Þ �min RAð Þð Þ (5)

4. Data collection

The data collection includes the following steps. First, the nearby facilities of each location
are acquired using the Search API of Google Maps. With the coordinates of a location and
text keywords (e.g. ‘hospital’) in a request, the API returns 20 facilities near the search
location, ranked by distance. n (1 � n � 20) of the 20 nearest facilities are selected to
calculate accessibility. Next, in-traffic travel times from each location to the n nearest
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facilities at different times are acquired using the Direction API of Google Maps (Google
2019a). At a specific time (t), two travel times are retrieved for each location-facility pair
with two different settings. The first travel time is requested with the departure time set to
a future time corresponding to t. The retrieved travel time is an estimate based on the
historical traffic condition at t on the same day of week. This travel time is considered as
the benchmark reflecting the normal traffic condition. The second travel time is requested
at exactly time t during the event, using ‘now’ as the departure time. This travel time
indicates the actual traffic condition. Finally, travel times retrieved in the two settings are
used to calculate the benchmark (A0

i tð Þ) and actual Hansen accessibility index (Ai tð Þ),
respectively, at the time t. With requests at multiple time points during the disaster, the
accumulated accessibility reduction (RAi) is calculated using Equation 4, which is then
used to calculate the resilience index (Ri) using Equation 5.

Data for the case study were collected in the metropolitan area of Cleveland, Ohio
during Winter Storm Harper on January 19th and 20th, 2019, which was a major storm
system that brought heavy snow from coast to coast in the United States. In the case
study, in-traffic travel times from the centroid of each census tract to nearby facilities were
requested at four time points, including 01/19/2019 11:00am (t1), 01/19/2019 17:00pm (t1)
, 01/20/2019 11:00am (t3), and 01/20/2019 17:00pm (t4) Eastern Time. According to the
weather record (National Oceanic and Atmospheric Administration (NOAA) 2019), t1 was
a time point before the storm impact arrived at Cleveland. Snowwas the heaviest at t2 and
lasting until the midnight of the day. Snow fall stopped between t2 and t3. In addition, we
defined 01/21/2019 0:00am (t5), which is 22 h after the last hour with recorded snowfall, as
the time point when the accessibility was no longer affected by the storm. We thus define
the accessibility returns to the benchmark (i.e. reduction = 0) at t5. An overall resilience
score was calculated from the accumulated accessibility reduction from t1 to t5 for each
census tract. In case the accessibility reduces later than t1 or recovers to the benchmark
earlier than t5, only the negative part (i.e. the part below the benchmark) was counted in
the calculation. Due to the small number of sampling times, linear interpolation was
applied to estimate the accessibility reduction between the sampled time points. Other
interpolation functions (e.g. polynomial functions) could be applied for a denser sampling
frequency.

In the case study, the Hansen index was calculated using travel times to five types of
facilities, including the center of the CBD, the nearest hospital, grocery store, police
department and fire station. The CBD represents the concentration of employments,
resources and services, which is often included in road accessibility and vulnerability
assessments (Taylor et al. 2006, Taylor and Susilawati 2012). Grocery stores are places to
obtain emergency supplies such as food, water, clothes and batteries for hazard prepara-
tion. Hospitals, police department and fire stations are critical facilities for emergency
response (Federal Emergency Management Agency (FEMA) 2010). Locations of the nearby
facilities around each tract were acquired using Google Search API. 41.505W and
−81.686N was considered as the center of the CBD, which was returned from the
Search API using ‘Downtown, Cleveland, OH’ as the keywords. The travel times were
requested using the settings of ‘fastest route’ and ‘driving mode’. The method can be
expanded to other travel modes (e.g. transit, bike and walk) and other route criteria (e.g.
the shortest route, avoid toll charge).
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Selecting only five facility types and four sampling time points are primarily due to the
cost of API usage. In the case study, the data collection includes 2,540 requests (635
census tract × 4 facility types excluding the CBD) to the Search API and 25,400 requests to
the Direction API (635 census tract × 5 facility types × 4 time points × 2 settings). A request
to the Search and Direction API costs $0.032 and $0.01, respectively (Google 2019b). The
total requests result in a cost of $335.28 (2,540 × $0.032 + 25,400 × $0.01).

5. Analysis results

5.1. Travel time increase

Increases of travel time from census tracts to nearby facilities were identified during the
winter storm. As illustrated in Figure 2, the average increasing ratio of travel times to the
five types of facilities all peaked at t2, when the snow fall was the heaviest. Particularly, the
average travel time to the CBD increased by nearly 30% at t2, while the average travel
times to other facilities increased by less than 10%. Thus, t2 can be considered the time
when the disturbance of the overall network is maximum at the four sampled time points.
At t2, the increasing ratios of travel time are positively related to travel distances to most
of the facilities (Figure 3), meaning that the storm impact is more severe for long-distance
travels. The linear relations of the fire station, grocery store, police department, and
hospital are all significant (p < 0.05) (Table 1). However, the increase ratio of travel
times to the CBD shows a different pattern: the ratio increases until around 28 km and
then starts to decline beyond this distance. This indicates that the storm impact to the
accessibility to the CBDmaximizes at a distance around 28 km. Whether this peak distance
exists or varies in other cities and in other storms needs to be analyzed in future studies.

5.2. Accessibility reduction

The accessibility index at the pre-event time point (t1) was slightly higher than the normal
condition, possibly due to the higher traffic volume at t1. To eliminate the bias of the
different traffic volume, the benchmark accessibility at all the four times was adjusted by

Figure 2. Average increasing ratios of travel time to the five types of facilities (refer to the left axis) and
precipitation (refer to the right axis).
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the difference between the actual and benchmark accessibility at t1, so that the accessi-
bility reduction at t1 became zero. The average accessibility reduction of the census tracts
at different time points are illustrated in Figure 4(a), showing that the accessibility had the
highest reduction at t2 and gradually restored towards the benchmark at t3 and t4. The
accessibility reduction differs at different census tracts at different times (Figure 4(b)).
Spatially speaking, census tracts near the CBD and along the east part of lake shore had
less accessibility reduction at t2 (Figure 5). However, at t3 and t4, the distant census tracts
recovered more quickly than the census tracts near the CBD. The spatial variance of
accessibility reduction can be potentially explained by the physical conditions (network

Figure 3. Relations between increasing ratios of travel time and travel distances. The relations of fire
station, grocery stores, police department, and hospital are fitted in linear models. CBD is fitted in
a generalized additive model. A summary of the regression models is reported in Table 1.

Table 1. Summary of the regression analyses. Scatter plots and regression lines can be found in
Figures 3 and 8.

Dependent variable (y) Independent variable (x)
Coefficient

(β)
Residual

(ε) p R2
Degree of
freedom

Ratio of travel time increase Dist. to fire station 0.0061 0.0557 < 0.001 0.0292 635
Dist. to grocery store 0.0082 0.0353 < 0.001 0.0586 635
Dist. to hospital 0.0046 0.0468 < 0.001 0.0948 635
Dist. to police department 0.0069 0.0480 < 0.001 0.0593 635

Normal accessibility Accessibility reduction at t2 1.5785 0.7711 < 0.001 0.3263 635
Normal accessibility Resilience 0.3417 0.3925 < 0.001 0.1334 635
Accessibility reduction at t2 Mean income −2.25e-07 −0.0403 < 0.001 0.0578 632
Resilience Mean income −2.49e-07 0.8682 < 0.001 0.0082 632
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topology, road type and capacity) as well as human interventions (e.g. snowplow and
adapted travel behaviors).

5.3. Resilience

As shown in Figure 6, the spatial distribution of overall resilience scores is uneven. Census
tracts with a low-resilience score are colored in red to express an alarming signal in these
places. In general, census tracts with a high-resilience score are mostly distributed along
the lakeshore north in parallel with the I-90 interstate highway. Low-resilience scores are

Figure 4. Average accessibility reduction at different times during the storm. (a) The average reduction
of all census tracts. (b) The reduction at different census tracts.

Figure 5. Spatial distribution of accessibility reduction in census tracts at t2, t3, and t4.
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scattered in the inland area to the south of the lakeshore. The Getis-Ord Gi* analysis (Getis
and Ord 1992) was applied to detect local clusters of resilience that are statistically
significant at different probability levels (see Figure 7). A high-resilience cluster (also called
‘hot spot’) refers to a contiguous area where high-resilience census tracts are located near
each other, while a low-resilience cluster (cold spot) represents the opposite. The result of
the Getis-Ord Gi* analysis (Figure 7) further confirms the visual observation in Figure 6:
most of the high-resilience clusters are located along the I-90 highway near the lakeshore.

Figure 6. Spatial distribution of road network resilience in census tracts.

Figure 7. Hotspot analysis of road network resilience in census tracts.
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5.4. Relations between variables

As shown in Figure 8(a,b), the accessibility reduction at t2 (the time point of the maximum
reduction) and the overall resilience are both positively related with the normal accessi-
bility. These results indicate that census tracts that have longer travel times to the facilities
at the normal condition experienced a higher level of disturbance and/or slower recovery
in the storm. These results also confirm the analyses in Figure 3 where longer distance
travels are associated with higher increases in travel time to the facilities. The accessibility
reductions at t2 (maximum disturbance) and resilience are negatively related with mean
incomes (Figure 8(c,d)), indicating that the higher-income communities were more
affected in the storm. These relations can be attribute to the demographic landscape in
Cleveland: the low-income communities tend to be located near the CBD where the
density of the selected facilities is high and so as the accessibility. Note, this study uses
travel time by driving to measure accessibility, which assumes equal access to a vehicle.
Future studies should consider the inequalities in vehicle ownership and access to other
transportation systems (e.g. transit). Still, some low-income communities with low resi-
lience of road network are noticeable. Figure 9 highlights the census tracts where the
income and road network resilience are both at the lower quantiles (25% and 50%). As
one of the most important indicator of social vulnerability and resilience (Cutter et al.
2003, 2010, Lam et al. 2015, Cai et al. 2018), income is often related with the capacity of
communities and individuals to cope with and adapt to the adverse impacts of hazards.

Figure 8. Relations between normal accessibility and accessibility reduction at t2. (b): The relation
between normal accessibility and resilience. (c): The relation between mean income and accessibility
reduction at t2. (d): The relation between income and resilience of road network. Blue lines are the
regression lines. Orange and red points in (d) are census tracts where the mean income and resilience
are both in the lower 50% quantile and 25% quantile, respectively.
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Given the low resilience of road network and socio-economic capacities, more attention
should be paid to these communities to minimize the adverse impacts of the storm.

6. Discussion

The study demonstrates the utility of the crowdsourced mobility data from Web 2.0 plat-
forms for assessment of road network resilience. The introduced approach measures
resilience of road networks using ground-truth data collected in real-disaster events.
Other than Google Maps, the measurement approach is applicable to similar data services
provided by Microsoft Bing Maps, ArcGIS for Developers, and Uber Movement. Compared
with traditional data collection methods (e.g. installation of road sensors and field data
collection), the crowdsourced data can be acquired at real-time and at a relatively low cost.
Despite the simple settings (e.g. only the nearest facility and five time points) applied in the
case study, the introduced assessment approach can be easily expanded to a larger region,
a longer period, more facilities, and/or a higher sampling frequency (e.g. hourly sampling).
Not limited to winter storms, the approach can be applied in other hazards such as
hurricane, king tide, sea level rise, and land slide that may cause accessibility reduction in
road networks. With applications in more hazard events and larger geographical areas, this
approach can increase the knowledge about the complex factors of road network resilience.
Such knowledge is generally lacking but crucial for building resilient and sustainable
transportation systems. Additionally, this approach can be implemented in an interactive
interface for emergency responders to monitor real-time accessibility at different locations
and identify communities in urgent need for assistance and disaster relief.

The effectiveness of hazard mitigation and emergency management can be evaluated
by comparing assessments in different case studies. Using the same approach, the
preliminary results shows a more complex pattern of network performance in Seattle in

Figure 9. Census tracts where the mean income and resilience are both in the lower 50% quantile and
25% quantile. Colors of the tracts correspond to the colored points in Figure 8 (b).
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Winter StormMaya (see Figure 10): the average increase of travel times to the CBD peaked
for a short period at the very beginning of the storm (at around 14:00pm on Friday, 02/08/
2019), and then quickly declined and stayed at a lower level afterwards. In the normal
rush hour on Fridays (16:00–17:00 according to TomTom 2016), the travel time has
returned near the normal condition, although the snowfall continued. The short distur-
bance period may be attributed to the effective emergency response in Seattle, including
the timely issuance of winter storm warnings and the early release of schools at noon on
the day. In addition to the case-by-case findings, general lessons about effective mitiga-
tion and emergency management can be gained from applications of this approach in
more hazard events and larger geographical areas.

The case study is limited to the measurement of accessibility to a few selected facilities.
A complete assessment of road network resilience should consider the disturbance of
individuals’ maximum mobility in space and time. As a profound conceptual model in
time-geography, the space-time prism (Hägerstraand 1970) represents individuals’ max-
imum travel extents or interaction potential in space and time as 3D prisms (Miller 2005,
Neutens et al. 2008). A future extension of the introduced approach could be the
integration with space-time prisms. The resilience of road network for an individual
person can be measured from the accumulated shrink of a 3D prism which represents
his maximummobility in space and time. Such location- or individual-level assessments of
road network resilience can support real-time decision-making in hazard events and
improve humanized transportation planning. Example questions can be answered
include: which communities are experiencing the greatest accessibility reduction during
a hazard? Are the socially vulnerable communities located in areas with low network
resilience? Are there communities or population groups systematically or disproportion-
ally affected due to low resilience of road networks?

Figure 10. Average increase ratio of travel time from the CBD to census tracts in the Seattle
metropolitan area during Winter Storm Maya.
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7. Conclusion

This study introduces an empirical approach to assess road network resilience using crowd-
sourced traffic data from Google Maps. Built on the conceptualization of resilience and the
Hansen accessibility index, accumulated accessibility reduction over time is used to measure
resilience of road network during natural hazards. The utility of this approach is demon-
strated in a case study of the Cleveland metropolitan area (Ohio) in Winter Storm Harper. The
results reveal strong spatial variations of the disturbance and recovery rate of road network
performance during the hazard event. The findings in the case study are: (1) longer distance
travels have higher increasing ratios of travel time during the hazard; (2) communities with
low accessibility at the normal condition have lower resilience (great and long-lasting
accessibility reduction) in the local road networks; (3) the spatial clusters of low network
resilience are identified. The study also suggests that special assistance should be applied to
the communities where both road network resilience and socio-economic capacities (e.g.
low income) are lower than the average. Utilizing crowdsourced geospatial data, this study
filled the void of empirical assessment of road network resilience at real-time and real-place.
The assessment results can provide ground-truth validation for existing quantitative models
to better predict road network resilience in extreme weather events. Integrated with the
theoretical frameworks of time-geography, this approach can be further expanded to model
the dynamic aspects of road network resilience and advance research about the social issues
(i.e. environmental justice and social equalities) related to transportation planning.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Yi Qiang is an Assistant Professor in the Department of Geography and Environment at
the University of Hawai'i at Manoa. He holds a Ph.D. in Geography from Ghent University,
Belgium. His research areas include in space-time modeling, visual analytics, geocomputation,
disaster risk assessment, dynamic modeling of coupled natural and human (CNH) systems.

Jinwen Xu is a Ph.D. student in the Department of Geography and Environment, University of Hawaii
at Manoa. He holds a master degree in Urban and Environmental Planning from Arizona State
University. He is interested in Geographical Information Science, spatial analysis, social media big
data, and natural disaster.

Data and codes availability statement

The data and codes that support the findings of this study are available in figshare.com with the
identifier(s) [doi.10.6084/m9.figshare.10279295.v1].

Funding

This article is based on work supported by two research grants from the U.S. National Science
Foundation: one under the Coastlines and People (CoPe) Program (Award No. 1940091) and the
other under the Methodology, Measurement & Statistics (MMS) Program (Award No. 1853866). Any

14 Y. QIANG AND J. XU



opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding agencies.

ORCID

Yi Qiang http://orcid.org/0000-0002-6872-8837

References

Aaheim, H.A. and Hauge, K.E., 2005. Impacts of climate change on travel habits: a national assess-
ment based on individual choices. Available from: https://pub.cicero.oslo.no/cicero-xmlui/han
dle/11250/191992

Adams, T., Bekkem, K.R., and Bier, V.M., 2011. Evaluating freight transportation resilience on
a highway corridor. In: Transportation Research Board (90th Annual Meeting of Transportation
Research Board, 2011). Available from: https://trid.trb.org/view/1093083 [Accessed 23 Aug 2019]

Adger, W.N., et al., 2005. Social-ecological resilience to coastal disasters. Science, 309, 1036–1039.
doi:10.1126/science.1112122

Andrey, J., et al., 2003. Weather as a chronic hazard for road transportation in Canadian cities.
Natural Hazards Research, 28, 319–343. doi:10.1023/A:1022934225431

Berdica, K., 2002. An introduction to road vulnerability: what has been done, is done and should be
done. Transportation Policy, 9, 117–127. doi:10.1016/S0967-070X(02)00011-2

Berdica, K. and Eliasson, J., 2004. Regional accessibility analysis from a vulnerability perspective.
Presented at the the second international symposium on transportation network reliability.
INSTR. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77205

Cai, H., et al., 2018. A synthesis of disaster resilience measurement methods and indices.
International Journal of Disaster Risk Reduction : IJDRR. doi:10.1016/j.ijdrr.2018.07.015

Calvert, S.C. and Snelder, M., 2018. A methodology for road traffic resilience analysis and review of
related concepts. ACS Pharmacology & Translational Science, 14, 130–154.

Chen, A., et al., 2007. Network-based accessibility measures for vulnerability analysis of degradable
transportation networks. Networks and Spatial Economics (NETW SPAT ECON), 7, 241–256.
doi:10.1007/s11067-006-9012-5

Chen, L. and Miller-Hooks, E., 2011. Resilience: an indicator of recovery capability in intermodal
freight transport. Transportation Science, 46, 109–123. doi:10.1287/trsc.1110.0376

Chung, E., et al., 2005. Effect of rain on travel demand and traffic accidents, In: Proceedings. 2005
IEEE intelligent transportation systems, 2005. 1080–1083. doi:10.1109/ITSC.2005.1520201

Cox, A., Prager, F., and Rose, A., 2011. Transportation security and the role of resilience: A foundation
for operational metrics. Transportation Policy, 18, 307–317. doi:10.1016/j.tranpol.2010.09.004

Cutter, S.L., Boruff, B.J., and Shirley, W.L., 2003. Social vulnerability to environmental hazards. Social
Science Japan Journal, 84, 242–261. doi:10.1111/1540-6237.8402002

Cutter, S.L., Burton, C.G., and Emrich, C.T., 2010. Disaster resilience indicators for benchmarking
baseline conditions. Journal of Homeland Security and Emergency Management, 7, 14.

Dalvi, M.Q. and Martin, K.M., 1976. The measurement of accessibility: some preliminary results.
Transportation, 5 (1), 17–42. doi:10.1007/BF00165245

Edwards, J.B., 1996. Weather-related road accidents in England and Wales: a spatial analysis. Journal
of Transport Geography, 4, 201–212. doi:10.1016/0966-6923(96)00006-3

Eisenberg, D., 2004. The mixed effects of precipitation on traffic crashes. Accident; Analysis and
Prevention, 36, 637–647. doi:10.1016/S0001-4575(03)00085-X

Eisenberg, D. and Warner, K.E., 2005. Effects of snowfalls on motor vehicle collisions, injuries, and
fatalities. American Journal Public Health, 95, 120–124. doi:10.2105/AJPH.2004.048926

Faturechi, R. and Miller-Hooks, E., 2014a. Measuring the performance of transportation infrastruc-
ture systems in disasters: A comprehensive review. Journal of Infrastructure Systems, 21, 04014025.
doi:10.1061/(ASCE)IS.1943-555X.0000212

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/191992
https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/191992
https://trid.trb.org/view/1093083
https://doi.org/10.1126/science.1112122
https://doi.org/10.1023/A:1022934225431
https://doi.org/10.1016/S0967-070X(02)00011-2
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77205
https://doi.org/10.1016/j.ijdrr.2018.07.015
https://doi.org/10.1007/s11067-006-9012-5
https://doi.org/10.1287/trsc.1110.0376
https://doi.org/10.1109/ITSC.2005.1520201
https://doi.org/10.1016/j.tranpol.2010.09.004
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1007/BF00165245
https://doi.org/10.1016/0966-6923(96)00006-3
https://doi.org/10.1016/S0001-4575(03)00085-X
https://doi.org/10.2105/AJPH.2004.%200C048926
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212


Faturechi, R. and Miller-Hooks, E., 2014b. Travel time resilience of roadway networks under disaster.
Transportation Research Part B: Methodological, 70, 47–64. doi:10.1016/j.trb.2014.08.007

Federal Emergency Management Agency (FEMA), 2010. Developing and maintaining emergency
operations plans, Comprehensive Preparedness Guide (CPG) 101. Available from: https://www.
fema.gov/media-library/assets/documents/25975

Federal Highway Administration. 1977. Economic impact of highway snow and ice control, final
report (No. FHWA-RD-77-95). https://rosap.ntl.bts.gov/view/dot/30611/dot_30611_DS1.pdf

Fortune, 2016. Here’s how much Winter Storm Jonas Cost the East Coast. http://fortune.com/2016/
01/25/winter-storm-jonas-economic-impact/

Getis, A. and Ord, J.K., 1992. The analysis of spatial association by use of distance statistics.
Geographical Analysis, 24, 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x

Google, 2019a. Maps JavaScript API - directions service. https://developers.google.com/maps/doc
umentation/javascript/directions

Google, 2019b. Maps JavaScript API usage and billing. https://developers.google.com/maps/docu
mentation/javascript/usage-and-billing

Hägerstraand, T., 1970. What about people in regional science? Papers in Regional Science : the
Journal of the Regional Science. doi:10.1111/j.1435-5597.1970.tb01464.x

Hanbali, R.M. and Kuemmel, D.A., 1993. Traffic volume reductions due to winter storm conditions, in:
transportation research record. Presented at the third international symposium on snow removal
and ice control technology, Minneapolis, Minnesota.

Hansen, W.G., 1959. How accessibility shapes land use. Journal of the American Planning Association,
25, 73–76. doi:10.1080/01944365908978307

Holling, C.S., 1996. Engineering resilience versus ecological resilience. Engineering Within Ecological
Constraints, 31, 32.

Hooper, E., Chapman, L., and Quinn, A., 2013. The impact of precipitation on speed–flow relation-
ships along a UK motorway corridor. Theoretical and Applied Climatology, 117 (1), 303–316.
doi:10.1007/s00704-013-0999-5

Hranac, R., et al., 2006. Empirical studies on traffic flow in inclement weather (No. publication No.
FHWA-HOP-07-073). Washington, DC: Federal Highway Administration. Available from: https://
vtechworks.lib.vt.edu/handle/10919/55110

Husdal, J., 2004. Reliability and vulnerability versus cost and benefits, In: Proc. 2nd Int. Symp.
Transportation Network Reliability (INSTR), Christchurch, New Zealand. 180–186.

Ibrahim, A.T. and Hall, F.L., 1994. Effect of adverse weather conditions on speed-flow-occupancy
relationships. Transportation Research Record.

Ishfaq, R., 2012. Resilience through flexibility in transportation operations. International Journal of
Logistics Research and Applications, 15, 215–229. doi:10.1080/13675567.2012.709835

Jacobsen, J.K.S., Leiren, M.D., and Saarinen, J., 2016. Natural hazard experiences and adaptations:
A study of winter climate-induced road closures in Norway. Norsk Geografisk Tidsskrift - Norwegian
Journal of Geography, 70 (5), 292–305. doi:10.1080/00291951.2016.1238847

Jenelius, E. and Mattsson, L.-G., 2015. Road network vulnerability analysis: conceptualization,
implementation and application. Computers, Environment and Urban Systems, 49, 136–147.
doi:10.1016/j.compenvurbsys.2014.02.003

Khattak, A.J., Kantor, P., and Forrest, C., 1998. Role of adverse weather in key crash types on
limited-access: roadways implications for advanced weather systems | request PDF.
Transportation Research Record Journal of the Transportation, 1621, 10–19. doi:10.3141/1621-02

Knapp, K., Kroeger, D., and Giese, K., 2000. Mobility and safety impacts of winter storm events in
a freeway environment. Iowa DOT project TR-426; CTRE management project 98-39. Iowa State
University. Center for Transportation Research and Education. https://rosap.ntl.bts.gov/view/dot/
23579

Koetse, M.J. and Rietveld, P., 2009. The impact of climate change and weather on transport: an
overview of empirical findings. Transportation Research. Part D, Transport and Environment, 14,
205–221. doi:10.1016/j.trd.2008.12.004

16 Y. QIANG AND J. XU

https://doi.org/10.1016/j.trb.2014.08.%200C007
https://www.fema.gov/media-library/assets/document%200C/25975
https://www.fema.gov/media-library/assets/document%200C/25975
https://rosap.ntl.bts.gov/view/dot/30611/dot_%200C30611%200C_%200C%200CDS1%200C.pdf
http://fortune.com/2016/01/25/winter-storm-jonas-economic-impact/
http://fortune.com/2016/01/25/winter-storm-jonas-economic-impact/
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://developers.google.com/maps/documentation/javascript/directions
https://developers.google.com/maps/documentation/javascript/directions
https://developers.google.com/maps/documentation/javascript/usage-and-billing
https://developers.google.com/maps/documentation/javascript/usage-and-billing
https://doi.org/10.1111/j.1435-5597.1970.tb01464.x
https://doi.org/10.1080/01944365908978307
https://doi.org/10.1007/s00704-013-0999-5
https://vtechworks.lib.vt.edu/handle/10919/55110
https://vtechworks.lib.vt.edu/handle/10919/55110
https://doi.org/10.1080/13675567.2012.709835
https://doi.org/10.1080/00291951.2016.1238847
https://doi.org/10.1016/j.compenvurbsys.2014.02.003
https://doi.org/10.3141/1621-02
https://rosap.ntl.bts.gov/view/dot/23579
https://rosap.ntl.bts.gov/view/dot/23579
https://doi.org/10.1016/j.trd.2008.12.004


Kwan, M.-P., 2013. Beyond space (as we knew it): toward temporally integrated geographies of
segregation, health, and accessibility. Annals of the Association of American Geographers, 103 (5),
1078–1086. doi:10.1080/00045608.2013.792177

Lam, -N.S.-N., et al., 2015. Mapping and assessing coastal resilience in the Caribbean region.
Cartography and Geographic Information Science, 0406, 1–8. doi:10.1080/
15230406.2015.1040999

Martin, P.T., et al., 2000. Inclement weather signal timings (No. UTL Research Report MPC01-120).
Salt Lake City: Utah Traffic Lab, University of Utah.

Maze, T.H., Agarwal, M., and Burchett, G., 2006. Whether weather matters to traffic demand, traffic
safety, and traffic operations and flow. Transportation Research Record: Journal of the
Transportation Research Board 1948. doi:10.1177/0361198106194800119

Miller, H.J., 2005. A measurement theory for time geography. Geographical Analysis, 37, 17–45.
doi:10.1111/j.1538-4632.2005.00575.x

Miller-Hooks, E., Zhang, X., and Faturechi, R., 2012. Measuring and maximizing resilience of freight
transportation networks. Computers & Operations Research, 39 (7), 1633–1643. doi:10.1016/j.
cor.2011.09.017

National Oceanic and Atmospheric Administration (NOAA), 2018. U.S. Billion-Dollar Weather &
Climate Disasters 1980-2018. Available from: https://www.ncdc.noaa.gov/billions/events.pdf

National Oceanic and Atmospheric Administration (NOAA) 2019. U.S. Hourly Precipitation Data.
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313

Neutens, T., 2015. Accessibility, equity and health care: review and research directions for transport
geographers. Journal of Transport Geography, 43, 14–27. doi:10.1016/j.jtrangeo.2014.12.006

Neutens, T., et al., 2008. A three-dimensional network-based space–time prism. Journal of
Geographical Systems, 10, 89–107. doi:10.1007/s10109-007-0057-x

Pregnolato, M., et al., 2017. The impact of flooding on road transport: A depth-disruption function.
Transportation Research Part D: Transport and Environment, 55, 67–81. doi:10.1016/j.
trd.2017.06.020

Sabir, M., et al., 2008. Welfare effects of adverse weather through speed changes in car commuting
trips (SSRN Scholarly Paper No. ID 1269333). Rochester, NY: Social Science Research Network.
Available from: https://papers.ssrn.com/abstract=1269333

Smith, A.B. and Katz, R.W., 2013. US billion-dollar weather and climate disasters: data sources, trends,
accuracy and biases. Natural Hazards Research, 67, 387–410. doi:10.1007/s11069-013-0566-5

Sohn, J., 2006. Evaluating the significance of highway network links under the flood damage: an
accessibility approach. Transportation Research. Part A, Policy and Practice, 40, 491–506.
doi:10.1016/j.tra.2005.08.006

Taylor, M.A.P., Sekhar, S.V.C., and D’Este, G.M., 2006. Application of accessibility based methods for
vulnerability analysis of strategic road networks. Networks and Spatial Economics (NETW SPAT
ECON), 6, 267–291. doi:10.1007/s11067-006-9284-9

Taylor, M.A.P. and Susilawati., 2012. Remoteness and accessibility in the vulnerability analysis of
regional road networks. Network vulnerability in large-scale transport networks. Transportation
Research. Part A, Policy and Practice, 46, 761–771. doi:10.1016/j.tra.2012.02.008

TomTom, 2016. TomTom traffic index. Available from: https://www.tomtom.com/en_gb/trafficin
dex/city/seattle

Zheng, Y.J. and Ling, H.F., 2013. Emergency transportation planning in disaster relief supply chain
management: a cooperative fuzzy optimization approach. Soft Computing, 17 (7), 1301–1314.
doi:10.1007/s00500-012-0968-4

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 17

https://doi.org/10.1080/00045608.2013.792177
https://doi.org/10.1080/15230406.2015.1040999
https://doi.org/10.1080/15230406.2015.1040999
https://doi.org/10.1177/0361198106194800119
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1016/j.cor.2011.09.017
https://doi.org/10.1016/j.cor.2011.09.017
https://www.ncdc.noaa.gov/billions/events.pdf
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://doi.org/10.1016/j.jtrangeo.2014.12.006
https://doi.org/10.1007/s10109-007-0057-x
https://doi.org/10.1016/j.trd.2017.06.020
https://doi.org/10.1016/j.trd.2017.06.020
https://papers.ssrn.com/abstract=1269333
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1016/j.tra.2005.08.006
https://doi.org/10.1007/s11067-006-9284-9
https://doi.org/10.1016/j.tra.2012.02.008
https://www.tomtom.com/en_gb/trafficindex/city/seattle
https://www.tomtom.com/en_gb/trafficindex/city/seattle
https://doi.org/10.1007/s00500-012-0968-4

	Abstract
	1. Introduction
	2. Related work
	3. Measurement framework
	4. Data collection
	5. Analysis results
	5.1. Travel time increase
	5.2. Accessibility reduction
	5.3. Resilience
	5.4. Relations between variables

	6. Discussion
	7. Conclusion
	Disclosure statement
	Notes on contributors
	Data and codes availability statement
	Funding
	ORCID
	References



