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Abstract — A lot of disciplines (e.g. archaeology) have to process 
imprecise temporal information. There are different possibilities to 
handle this kind of information, amongst them e.g. fuzzy set theory and 
rough set theory. In this paper, due to its capability in the context of 
many data acquisition applications, the focus has been set on rough 
set theory. To illustrate temporal information, an interval is often 
visualised by means of a one-dimensional segment in a one-
dimensional space. An alternative representation of time intervals is 
called the Triangular Model (TM) by which a time interval is 
represented by a point in a two-dimensional space. In this paper, 
rough set theory is applied into TM, which gets extended to the Rough 
Triangular Model (RTM). In RTM, Rough Time Intervals (RTI) and 
their mutual relations can be visualised diagrammatically, which 
offers opportunities to visualise and analyse imprecise temporal 
information. Aerial photos, taken during World War �, containing 
imprecise temporal information with archaeological background, are 
used to illustrate the potentials of the model in processing RTI. 
 
Keywords — Imprecise temporal information, rough set theory, 
temporal reasoning, temporal relation, time interval, triangular 
model. 

1 Introduction 
For time intervals, the most widely adopted representation is 
the linear model where time intervals are modelled as finite 
linear segments in a one-dimensional space. Much research 
has been carried out on representing and reasoning about time 
intervals, most of which is based on this linear concept and 
simple temporal relations [1] [3] [6] [7] [10]. Though Rough 
Time Intervals (RTI), i.e. intervals starting and/or ending at 
uncertain time stamp are also frequently used in many 
disciplines, there is still a shortage of methods and tools to 
visualise them. An alternative temporal model, the Triangular 
Model (TM), has been proposed in [11] [12] [2]. This model 
is based on the W-diagram introduced in [4] [5]. Up till now, 
TM has remained mainly a theoretical concept. However, it 
seems to offer a promising design for several applications.  
A lot of disciplines (e.g. archaeology, geography, psychology, 
and philosophy) are faced by the problem of having imprecise 
temporal information. To handle this information it can be 
reverted to different approaches, for instance to fuzzy set 
theory [13]. This theory aims to formalise inherently fuzzy 

concepts by permitting the gradual assessment of the 
membership of an element in relation to a set. Another way to 
deal with imprecise temporal information can be found in 
rough set theory [8] [9]. This theory introduces a concept of 
lower and upper approximation and a boundary region, 
describing a set where elements can or can not be decisively 
classified into a set X. In contrast to fuzzy set theory, rough 
set theory is particularly useful in the context of many data 
acquisition applications. Therefore, in this paper the rough set 
theory has been chosen to be applied into the TM. 
This paper extends TM to RTM in order to visualise and 
analyse RTIs. First, the basics of TM are introduced in 
section two. The remainder of this section describes RTIs and 
their visualisation in the RTM. In section three, we illustrate 
how to visualise rough time relations of RTIs by means of the 
RTM. This section is followed by a description of an 
application of the RTM to incomplete temporal data which is 
deriving from an archaeological background. Finally, 
conclusions are drawn and future work is pointed out. 
 

2 The Triangular Model 
2.1 Representing time intervals with TM 
Time is usually conceptualised as a linear, one-dimensional 
time line (Fig. 1). In this classical concept, a temporal interval 
I is visualised by a segment that is bounded by a begin point 
I- and end point I+. In the linear model, the vertical dimension 
is only used to differentiate multiple overlapping intervals, if 
used at all. An interval without duration is visualised as a 
point (zero dimension). The basic concept of TM is the 
construction of two lines through the extremes of a linear 
time interval (Fig. 2). For each time interval I, two straight 
lines (L1 and L2) are constructed, with L1 going through I-; L2 
going through I+, and where the angle �1 = �2. The 
intersection of L1 and L2 is called the interval point I. The 
position of I in the two-dimensional space completely 
determines both, the beginning and end point of the interval 
(Fig. 3).  
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Figure 1: Linear representation of time intervals. 

 

 
Figure 2: Construction of a simple interval point. 

 

 
Figure 3: Time intervals in TM. 

 
2.2 Representing RTIs with TM 
It is often difficult for scientists to obtain precise temporal 
information about events or processes. Geological periods, 
for example, are always associated with uncertain starting and 
ending times. In history and archaeology as well, many 
events are lacking precise temporal demarcation. For instance, 
consider the impreciseness coming along with radiocarbon 
dating. 
Scientifically underpinned treatments for imprecise 
information handling are already existing. For instance, fuzzy 
set theory [13] aims to formalize inherently fuzzy concepts by 
permitting the gradual assessment of the membership of an 
element in relation to a set. It extends conventional (crisp) set 
theory and handles the concept of partial truth, i.e. truth 
values between 0 (complete false) and 1 (complete true). 
Another way to deal with imprecise information can be found 
in rough set theory [8] [9]. The main purpose of rough set 
theory is the induction of approximations of concepts, which 
are represented by the upper approximation B  and the lower 
approximation B . Within B , elements can be decisively 
classified into a set X; outside B , elements are not members 
of X. The difference between B  and B  forms a boundary 
region. If the boundary region is nonempty, a set is said to be 
rough; otherwise the set is crisp. In the boundary region, 
elements can not be decisively classified as members or not 
members of X.  

Rough set theory is particularly useful in the context of 
temporal information, due to the nature of data acquisition in 
many scientific applications. Remote sensing, for instance, is 
a world-wide applied tool that relies on images taken at 
discrete time stamps. One can determine the state of a feature 
on these snapshots, whereas this state is uncertain in between 
two time stamps. However, we rely on the very natural 
assumption that this state does not change in between two 
snapshots which show similar states, i.e. the uncertain parts 
only remain in between two snapshots showing different 
states. Hence, we might consider a period of snapshots 
showing similar states (closed time interval) as a lower 
approximation for this state and its neighbouring periods of 
uncertainty (two open time intervals) as boundary region; 
both then cumulate into the state’s upper approximation 
(open time interval) (Fig. 4). Thus, a feature’s state can be 
considered as a rough set or more specifically a RTI. Next to 
remote sensing, this idea applies to numerous other fields, 
such as, soil core sampling, socio-economical census and 
surveys, and opinion polls. 
 

 
Figure 4: Rough set interval in remote sensing. 

 
In the classical linear model, RTIs are represented as linear 
segments with an uncertain beginning range and an uncertain 
end range (Fig. 5). If there is a huge amount of rough 
intervals, it is quite difficult for humans to abstract 
information from this representation. Therefore the analyse 
capacities of the linear model are quite limited. For an 
advanced temporal analysis based on visualisation an 
alternative is needed.  
In TM, a RTI is represented by a polygon. Four lines are 
constructed respectively from the earliest/latest beginning and 
the earliest/ latest end, forming a diamond (Fig. 6). This 
polygon indicates a zone within which the uncertain interval 
can be found. We call this representation the Rough 
Triangular Model (RTM).  
In some cases, the beginning and end range have intersections. 
Take I5 in Fig. 6 for example, we only know that it starts 
between 3 and 5, and ends between 3 and 5. In this case, the 
interval is represented as a triangle incumbent on the x-axis in 
RTM. In some other cases, intervals are partially rough: they 
have a precise beginning/end, but an imprecise end/beginning. 
These semi-rough intervals can be represented by lines (e.g. 
I2 in Fig. 6). There are still other possibilities such as semi-
open intervals, two-sided open intervals and totally 
indefinable intervals. In this paper, we are focussing on the 

TIME (s)

I1 ]5, 8[ 

I2 ]1, 3[ 

I3 ]1, 7[ 

I4 ]1, 9[ 

I5 ]5, 7[ 

0 1 2 3 8 9 4 5 7 6 10
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first type of RTIs which are having a twofold, non-
overlapping boundary region. 
 

 
Figure 5: Linear representation of RTIs1. 

 

 
Figure 6: Visualising RTIs in RTM. 

 

3 Rough temporal relations 
When time intervals are rough, the relations between them 
also become rough. RTM provides the possibility of 
visualising and analysing temporal relations in a two-
dimensional space 
3.1 Representing fine temporal relations in TM 
Based on the basic work of Allen [1], an interval I is 
represented as a pair (I- ; I+) with real numbers I- and I+, 
denoting respectively the beginning and end points of the 
interval. This means that Allen only deals with simple 
intervals having a specified duration. Let the beginning I- and 
end point I+ of two simple intervals have the following three 
possible relations: smaller than (<), equal (=) and larger than 
(>). Then, thirteen possible fine relationships between two 
intervals can be defined (see Tab. 1). 

Table 1: Thirteen Allen relations [1]. 
Allen’s temporal relations 

I1 equal I2 if  I1
- = I2

- ^  I1
+ = I2

+  
I1 starts I2 if  I1

- = I2
-  ^  I1

+<  I2
+  

I1 started-by I2 if  I1
- = I2

- ^  I2
+<  I1

+  
I1  finishes I2  if  I1

+ = I2
+ ^  I1

- > I2
-  

I1  finished-by I2  if  I1
+ = I2

+ ^  I2
- > I1

-  
I1 meets I2 if  I1

+ = I2
-   

I1 met-by I2  if  I2
+ = I1

-   
I1 overlaps I2  if  I2

- > I1
- ^  I1

+< I2
+ ^  I1

+ > I2
- 

I1 overlapped-by I2 if  I1
- > I2

- ^  I1
- < I2

+ ^  I2
+ < I1

+  

I1 during I2 if  I1
- > I2

- ^  I1
+ < I2

+  
I1 contains I2  if  I2

- > I1
- ^  I2

+ < I1
+  

I1 before  I2 if  I1
+ < I2

-    
I1 after I2 if  I2

+ < I1
-   

                                                 
1 In this paper, we use ISO standard notation to distinguish open intervals 
and close intervals. In this notation, ]a, b[ denotes open interval, [a, b] 
denotes close interval and ]a, b] denotes left-open but right-close intervals. 
Since Allen’s intervals are open, we use ]a,b[ here to denotes Allen’s 
intervals. 

 
Using TM [12], these relations can be visualised. Each 
relation thereby corresponds to a specific Fine Relation Zone 
(FRZ) within TM. Given a study period beginning at 0 and 
ending at 100, all examined intervals are located within the 
isosceles triangular of I ]0, 100[. To obtain the best 
visualisation, the reference interval I2  ]33,66[ is chosen to be 
located in the centre of TM. As shown in Fig. 7b several 
intervals (I1a, I1b, I1c, I2) may exist before interval I2  ]33,66[. 
All possible intervals for which I1

+ < I2
- applies are 

generalised, with respect to interval I2, into the FRZ before, 
displayed by the black triangle in Fig. 7c. Note that as Allen 
worked with open intervals, also the interval zone 
corresponding to I  ]0,33[ is open. The right boundary of FRZ 
before represents all intervals for which applies I1

+ = I2
-. 

Therefore, the intervals have their end point at 33, resulting in 
the meets relationship. 
Comparing the visualisations of TM with the linear model, 
both visualise the same fine interval relations, as displayed in 
Fig. 7a and Fig. 7c. The benefit of TM in visualising time 
relations gets spontaneously definite. The time intervals in 
Fig. 7c is faster to capture than the one in Fig. 7a. An 
overview of positions and names of the thirteen FRZs is 
given in Fig. 8. 

 
I1a ]10, 23[
I1b ]20, 25[
I1c ]6, 25[

I2 ]33, 66[ 
T(s)

Figure 7: Visualisation of fine intervals by means of the 
linear model a) and  TM b). FRZ before within TM c). 

 
 

Figure 8: Thirteen FRZs in TM. 
 

3.2 Relation zones in RTM 
While TM represents fine intervals and fine interval relations, 
RTM represents rough intervals and its relation zones are 
Rough Relation Zones (RRZs).  
To transform FRZs into RRZs, all point and line zones of TM 
(equal, starts, started-by, finish, finished-by, meets, and met-

I1 LA: [7, 7]; UA: ]5, 9[ 

TIME (s)

0 1 2 3 8 94 5 7 6 10

I2 LA: [2, 3]; UA : ]0, 3[  

I3 LA: [1, 5]; UA : ]0, 7[ 

I4 LA: [2, 8]; UA: ]0, 10[ 

I5 LA: [3, 5]; UA: ]3, 5[ 

LA: Lower approximation 
UA: Upper approximation 
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by) are expanded according to the duration of the boundary 
regions of the reference interval I2. Hence, two polygon zones 
arise from the intersections of the expanded line zones starts 
and meets as well as from the intersections of the expanded 
line zones finishes and met-by (Fig. 9). Note that the absolute 
position of these zones may change according to the used 
data, while the relative position always remains. 
Transforming the TM to RTM, fifteen relation zones are 
generated; nine of these are expanded zones (Fig. 9 and Tab. 
2). The names of the expanded zones are based on the names 
of FRZs, but preceded by ‘maybe’. Therefore these expanded 
relation zones are named maybe zones. 
In TM, only one specific fine relation is possible within a 
FRZ (Tab. 2). Different from that, in RTM maybe zones 
represent zones where several fine relations are possible (Tab. 
2). This is caused by the fact that a RRZ consists of parts of 
corresponding neighbouring FRZs in TM. The dashed lines in 
Fig. 9 represent the borders of original FRZs. In RTM, the 
positions of these dashed lines are uncertain and can be 
anywhere within the corresponding maybe zone. This is 
different from fuzzy set interval where the dashed lines have 
gradually-changing probability of appearance. Thus, we only 
use flat colour (white) to mark the interior of maybe zones. 
Note that each maybe zone contains the relations of its 
neighbouring zones in RTM (Fig. 9).  

 
Figure 9: RRZs in RTM. 

 
Table 2: Thirteen FRZs in TM and fifteen RRZs in RTM 

FRZ RRZ 

Name Abbr. Name possible
relations Abbr.

equal E maybe 
equal 

contains, 
started-by, 

overlapped-
by, finishes, 

during, 
starts, 

overlaps, 
finished-by, 

equal 

ME 

starts S maybe 
starts 

starts, 
overlaps, 

during 
MS 

started-by SB maybe 
started-by 

started-by, 
overlapped-
by, contains 

MSB 

finishes F maybe 
finishes 

finishes, 
during, 

overlapped-
by 

MF 

finished-by FB maybe 
finished-by 

overlapps, 
finished-by, 

contains 
MFB 

meets M maybe 
meets 

meets, 
before, 

overlaps 
MM 

met-by MB maybe met-
by 

met-by, 
overlapped-

by, after 
MMB 

overlaps O overlaps overlaps O 
overlapped-

by OB overlapped-
by 

overlapped-
by OB 

during D during during D 
contains C contains contains C 
before B before before B 
after A after after A 

/ / 

maybe 
meets or 
maybe 
starts 

before, 
meet, 

overlaps, 
during, 
starts 

MM-
MS 

/ / 

maybe 
finishes or 
maybe met-

by 

during, 
finishes, 

overlapped-
by, met-by, 

after 

MF-
MMB 

 
Unlike with FRZs, the border lines of RRZs do not make up 
separate relation zones but belong to one of their 
neighbouring RRZs. Due to their definition, the boundary 
regions in the beginning and the end of RTIs are open 
intervals (Fig. 4). The corresponding assignments are 
illustrated in Fig. 10, where the arrows are pointing into the 
zone to which the respective border line is assigned. 
 

 
Figure 10: Assignment of the borders of RRZs. 

 
3.3 Applying RTM 
In order to evaluate whether RTM is helpful for the analysis 
of imprecise temporal information; we tested RTM with data 
deriving from an archaeological context. During World War �, 
aerial photos covering the Belgian-German front line in 
West-Flanders (Belgium) have been taken. From these aerial 
photos, we can observe whether a feature such as a fire trench, 
a gun position or a barrack, was not yet present, was present 
or was destroyed. For each feature, several photos with 
according date of acquisition exist. Hence, if we can find (1) 
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the last photo where the feature is not yet found, (2) the first 
photo where the feature is found, (3) the last photo where the 
feature is found, and (4) the first photo where the feature is 
destroyed, we can derive a RTI representing the feature’s 
uncertain lifetime (Fig. 4). 
In RTM, fifteen RRZs can be created for one feature (Fig. 9). 
Lots of similar intervals will yield overlapped RRZs. If 
different grey shades are added to denote the number of 
overlaps in the concerning area, there will appear some 
patterns which reflect characteristics of the underlying data. 
Fig. 11 and Fig. 12 visualise the overlaps of maybe equal 
zones of gun positions and breastworks respectively. More 
overlapped areas are marked with dark grey, and vice versa. 
Comparing these two visualisations, we can have a direct 
overview about how the two types of features are temporally 
distributed. As in the model most polygons of gun positions 
are distributed right of the breastworks zones, comparing Fig. 
11 with Fig. 12, we may observe that gun positions exist 
relatively later than breastworks. It also can be observed that 
breastworks generally exist longer than gun positions because 
most of the breastworks zones are higher on the y-axis than 
the zones of the gun positions. 
 

 
Figure 11: Overlaps of maybe equal zones of gun positions. 

 
 

 
Figure 12: Overlaps of maybe equal zones of breastworks. 

 

If we select contain interval zones of gun positions (Fig. 13), 
the display of the model can be divided into several zones 
according to the colour grade. If an interval point is in the 
dark zone, it contains intervals of most features. In other 
words, in the dark zone, all intervals contain most features 
lifetime intervals. In natural language, we could say: if an 
interval is in a dark zone, it witnesses the lifetime of most 
features. This approach can be applied to other RRZs and 
even to combinations of relation zones. 
 

 
 

Figure 13: The overlaps of the contain zone of gun positions. 
 

4 Conclusions and future work 
Since a lot of disciplines (e.g. archaeology, geography, 
psychology, and philosophy) are faced by the problem of 
having imprecise temporal information we extended TM into 
RTM in order to visualise RTIs and temporal relations 
between them. We do not intend to create a new or extend an 
existing temporal calculus or temporal logic. Our approach 
takes special care for the intuitive and visualization aspects. 
In RTM, RTIs are represented by simple geometries (e.g. 
lines and polygons) in a two-dimensional space. Compared to 
the classical linear model, which has limited analytical 
capacities, RTM gives people a direct overview of the 
temporal distribution of RTIs. When handling a huge amount 
of rough intervals, RTM provides a compact visualisation 
pattern, which helps in further exploratory analysis. 
Furthermore, the temporal relations between RTIs can be 
visualised as zones, i.e. RRZs, in the two-dimensional space, 
which gives potentials in visual queries of rough temporal 
relations.  
In this paper, we described the basics of RTM and RRZs. 
However, further research needs to be done. 
First, as explained in 2.2; also other types of RTIs should be 
considered, e.g. partially rough intervals, one-sided open 
intervals and intervals with overlapped begin and end 
boundary regions. This would imply a wide modification of 
the RRZs. This major change in the division of the RRZ 
consequently has to be followed by an adaptation of 
visualisation and interpretation. Whether these visualisation 
and analyses are delivering feasible results has to be tested in 
further research. 
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Second, the idea of conceptual neighbourhood has proved its 
importance in qualitative reasoning about time and space. 
When temporal relations become rough, there are more 
possibilities that one relation continuously changes to another 
relation without passing through other relations. Thus, the 
conceptual neighbourhood diagram of rough temporal 
relations will change accordingly. Also, the practical use of 
conceptual neighbourhood of temporal relations of rough 
intervals has to be studied in detail. 
Third, so far we dedicated the borders of the RRZs of the 
RTM to one of the RRZs. But following the example of the 
TM, these lines could be relation zones by themselves. That 
would mean that additionally to the fifteen RRZ we would 
have nineteen line zones and probably six point zones. In 
total RTM would be build up out of forty zones. The 
additional line zones would include, for example, line zones 
of TM like starts, started-by, finishes, finished-by, meets and 
met-by. But also new line zones would be created like the line 
zones which are located between the zones maybe starts or 
maybe meets and maybe meets. Within this line zone a wide 
range of relations are possible. Whether this great number of 
RRZ provides useful visualisations and if the interpretation 
could be aided by a computer still needs to be determined. 
Also whether this interpretation would deliver helpful 
information still needs to be investigated. 
Finally, this model can be more useful if it is implemented as 
an interactive tool. More flexible and interactive visualisation 
tools can help to better analyse complex temporal data. 

Acknowledgment 
The research work of Yi Qiang, Matthias Delafontaine and 
Birger Stichelbaut is funded by the Research Foundation–
Flanders. The research work of Katrin Asmussen is co-funded 
by the Belgian Federal Science Policy. 

References   
[1] J.F. Allen. Maintaining Knowledge about Temporal Intervals. 
Communications of the ACM, 26:832-843, 1983. 

[2] G. De Tré, et al. Towards a flexible Visualisation Tool for dealing with 
Temporal Data. In proc. of “FQAS” LN AI, 4027: 109-120, 2006. 

[3] C. Freksa. Temporal Reasoning based on Semi-Intervals. Artificial 
Intelligence, 54:199-227, 1992. 

[4] Z. Kulpa. Diagrammatic Representation for a Space of Intervals. Machine 
Graphics & Vision 6: 5-24, 1997. 

[5] Z. Kulpa. Diagrammatic Representation of Interval Space in Proving 
Theorems about Interval Relations. Reliable Computing 3:209-217, 1997. 

[6] V. Kumar, R. et al. Allen. Metadata Visualization for Digital Libraries: 
Interactive Timeline Editing and Review. In proc. of "ACM Digital 
Libraries", Pittsburgh, USA, 1998. 

[7] J.D. Mackinlay. The Perspective Wall: Detail and Context Smoothly 
Integrated. In proc.  "ACM CHI'91",  New York, 1991. 

[8] Z. Pawlak. Rough Sets. Int. J. of Information and Computer Science, 
11:341-356, 1982. 

[9] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. 
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991. 

[10] S. Schockaert, M.D. Cock, and E.E. Kerre. Fuzzifying Allen's Temporal 
Interval Relations. IEEE Transactions on Fuzzy Systems, 16: 517-533, 2008. 

[11] N. Van de Weghe, et al. The Triangular Model as an Instrument for 
Visualising and Analysing Residuality. J. of Archaeological Science 34: 649-
655, 2007.

[12] N. Van de Weghe. Development of a Conceptual Data Model for digital 
spatio temporal Geographical Information. In proc. “ER”, LNCS, Tampere, 
Finland, 2002. 

[13] L.A. Zadeh. Fuzzy Sets. Information and Control 8: 338-353, 1965. 
 

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1485


