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Abstract 

We develop a general ontology of science knowledge for use in e-Science Knowledge 

Infrastructures (SKIo), to advance use of digitally represented scientific theories in these 

environments. SKIo extends the DOLCE foundational ontology with science knowledge 

primitives, such as science theories, models, and data. These are arranged to reflect the complex 

knowledge structures used in science, such as scientific ideas playing different roles within and 

between theories. SKIo is illustrated in UML, encoded in OWL-DL, uses the Descriptions and 

Situations extension, and provides defining conditions for its primitives to enable an extensible 

and rigorous bridge between a foundational ontology and domain science ontologies. Testing with 

several environmental theories confirms the suitability of its representation.  

 

1. Introduction 

Infrastructures in support of cyber-aided scientific activity, or e-Science, are being developed in 

many scientific domains (Hey & Trefethen, 2005). This is leading to significant scientific and 

societal benefits, in that larger and faster computations are occurring over more data, and the 

resultant predictive models are providing larger and more accurate scenarios about situations 

affecting human well-being. Although these early e-Science achievements are laudable and 

significant, they do fall short of a broader e-Science vision in which scientists not only operate 

over more observed data to make better predictive models, but also directly use e-Science 

infrastructures to find, generate and test scientific theories (i.e. networks of scientific abstractions, 

associated implications, and certainties). The broader vision of e-Science requires a Scientific 

Knowledge Infrastructure (SKI; Hars, 2001) that enables the capture, representation and use of the 

full spectrum of scientific knowledge for e-Science. Using SKIs, scientists should be able to 

annotate existing resources, such as observed data, predicted models, and ancillary products, with 

respect to relevant and potentially competing scientific theories, in order to enable knowledge 

search, knowledge evaluation, and reproduction of experimental results.  

 

The present focus on a partial set of science knowledge primitives has some negative 

consequences as it deters full scientific discovery and reproducibility in e-Science 

infrastructures—because only some knowledge is explicitly represented in the infrastructure, 

while other knowledge is implicit and buried in scientists‘ heads and in ancillary resources such as 

textbooks, papers, reports and maps. An initial challenge then is the development of a formal and 

computable representation of a wide segment of science knowledge primitives. Foundational 

ontologies in particular are good candidate for representing such knowledge, not only due to their 
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formality, rigor and commitment to internal coherence, but also due to their generality in that, like 

scientific knowledge primitives, the contents of foundational ontologies are intended to be re-used 

across many (all) science domains. This contrasts with the numerous ontologies being developed 

for specific science domains, and is aligned with the few that are being developed as a general 

upper superstructure, but these latter general efforts are addressing only a subset of science 

knowledge primitives or they do not extend an existing foundational ontology, which limits their 

breadth of application. 

 

In this paper we extend the DOLCE foundational ontology in support of e-Science with basic 

science knowledge primitives, such as scientific models, theories, data, and test the resultant SKI 

ontology (SKIo) by representing several environmental theories. Section 2 describes a typical 

use-case scenario in the environmental sciences; Section 3 discusses related work; Section 4 

discusses our general approach based on computationally inspired renditions of the science 

knowledge cycle, Section 5 describes SKIo; the results of using SKIo to represent environmental 

theories and models is outlined in Section 6. Section 7 relays some limitations of SKIo, and 

Section 8 concludes with a brief summary. 

 

2. An Environmental Modeling Use-Case Scenario 

Problem Scenario: Jane is a scientist working on extending a global climate model.  She wants 

to integrate a terrestrial Carbon exchange model into her larger global climate model. 

 

Present Day Solution: Jane begins searching for carbon exchange models using a few keywords 

in Google as well as in her University library database.  She comes up with a huge number of hits 

and begins the long process of sifting through these, many of which are irrelevant.  After much 

work she has a large collection of papers that seem relevant but cannot be easily differentiated, 

largely because they use polysemous terminology. For example the key term ―model‖ is used in 

several senses in the Carbon exchange literature, of which the first two are relevant to her: 

 

1. model = a system of equations to support calculations that generate simulations (Adams, 

et al., 2004) 

2. model = a theory which might include equations as well as scientific implications 

(Baldocchi, et al., 2000) 

3. model = a simulation software that utilizes a system of equations and implications 

(Phillips, et al., 2006) 

4. model = the results of a simulation run, or other modelling process, in which some 

climatic situation (in a geographical area) is represented (Phillips, et al., 2006) 

 

Proposed Solution: Jane logs on to a web-based SKI and begins searching for a relevant ―model‖ 

by using a number of concepts she is familiar with in Carbon modelling; she expects these 

concepts to be used as variables in equations. Because the different senses of ―model‖ are well 

demarcated by the SKI ontology, and because the SKI‘s contents are annotated by this ontology, 

she is able to find entities corresponding to senses 1 and 2 that contain the concepts of interest. 

She soon finds a few candidates, each linked to a set of digital resources. After integrating the 

newly found model, and running her experiment, she creates a web page documenting this process 
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and containing a publication draft. She then annotates this resource in the SKI, making it available 

to other researchers. 

 

Additional Requirements: In addition to aiding Jane as described above, SKIs should also help 

scientists resolve questions and tasks such as: given problem p, has anyone else solved that 

problem, or a similar problem in another domain? Who is working in the same research field?  I 

want to test a new theory x2 by replacing existing theory x1 against a configuration of data y as 

originally written about in journal paper z.  What other data configurations satisfy theory x1? 

What other theories are satisfied by y, in which papers, and how do these differ from x1? How was 

x1 derived—what observed data, line of reasoning, and verification procedures were used, in 

which papers? What other theories is x1 part of, and what is its role in those theories? What 

theories have been derived from x1? What theories could be derived from x1 that satisfy y?  

 

3. Related Work 

Although ongoing work on scientific ontologies is vast, and growing, at present a general 

ontology for science knowledge does not exist. Existing initiatives emphasize the computational 

representation of the science knowledge cycle or the development of ontologies that span aspects 

of all sciences, are limited to one science domain, or which incorporate foundational ontologies. 

 

The Science Knowledge Cycle:  Several accounts of the scientific knowledge cycle begin to 

distil the numerous and complex philosophical approaches into representations amenable to 

computation. The focus is on identification of the key elements in the cycle (Langley, 2000; 

Shrager & Langley, 1990; Sowa, 2000; 2006; Thagard, 1988), in some cases for schema 

representation (Hars, 2001; 2003), or for integrating the steps using formal reasoning systems 

(Ray, 2005), but without adopting ontologies as a formal representation framework. 

 

Ontologies of Science: by science ontologies we mean a conceptualization of general science 

knowledge primitives that can be applied in many (all) science domains and which are 

represented, and well defined, in some formal language such First Order Logic or OWL (Antoniou 

& Van Harmelen, 2003). Existing science ontologies meet this definition only in part because they 

focus on a fragment of the key knowledge primitives such as scientific experiments (Soldatova & 

King, 2006) or publications (Benjamins, et al., 1998), and omit other key aspects such as theories 

and models, or they do posses broader contents but without formal representation (Rijgersberg, et 

al., 2008).  

 

Domain Science Ontologies: ontologies are being developed in numerous science domains, such 

as biosciences, geosciences, environmental and earth sciences (McCray, 2003; Natale, et al., 2007; 

Raskin & Pan, 2005). These ontologies cannot serve as a superstructure for science knowledge 

because the abstractions are not sufficiently general, They are largely being used to facilitate data 

interoperability and workflow operation (Ludäscher, et al., 2006; McGuinness, et al., 2006), rather 

than to annotate and test new scientific ideas. Many are organized bottom-up from existing 

vocabularies (Raskin & Pan, 2005) and not around systematic ontological principles such as those 

utilized by most foundational ontologies, resulting in diverse ontological assumptions that are not 

easily recognized nor reconciled. 
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Foundational Ontologies and Science Knowledge: foundational ontologies provide a 

superstructure containing the most general abstractions, that can be extended to general science 

ontologies and domain ontologies, e.g. DOLCE, BFO, GFO, SUMO (Grenon & Smith, 2004; 

Herre, et al., 2006; Masolo, et al., 2003; Pease, A. 2006). An ideal arrangement of ontologies 

would then position a general ontology of science as a layer between foundational ontologies and 

domain science ontologies (Soldatova & King, 2006), as shown in Figure 1. With the exception of 

the ontology of experiments (Soldatova & King, 2006), this intermediary layer is at present 

missing, in that domain science ontologies directly extend from existing foundational ontologies 

or related foundational theories (Bittner, 2007; Gangemi, et al., 2004; Grenon et al., 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 1: a general science ontology extends a foundational ontology and is extended by domain 

science ontologies (after Soldatova & King, 2006). 

 

4. Approach 

SKIo extends the DOLCE foundational ontology with a modest number of science knowledge 

primitives synthesized from computational accounts of the science knowledge cycle (Hars, 2003; 

Sowa, 2006). SKIo is first represented in UML (Brodaric, 2008), and then in OWL-DL. Following 

OWL terminology conventions, the primitives consist of classes and properties: classes refer to 

abstractions that can be instantiated in one more individuals, and properties refer to relations 

between two classes; individuals are single entities that instantiate a class, i.e. instances. Both 

class and property names will be presented in italics henceforth. 

 

The SKIo extension process involves adding general science classes and properties to the DOLCE 

hierarchy of classes and properties, using the subclassOf and subpropertyOf OWL 

constructs (for subsumption), such that the additions form leaves in these hierarchies, and the 

original hierarchical structure remains unchanged. This also involves leaving the contents of 

DOLCE classes largely untouched, i.e. axioms were added to only two existing DOLCE classes. 

Such modularization enables SKIo to exist as an independent OWL-DL file (with a separate 

namespace), that can be imported alongside DOLCE as needed.  

 

Several other principles in addition to the modularity principle were to be followed in the design 

of SKIo (after Gruber 1995): 

 

 Semantic Grounding: SKIo is to be founded on recognized accounts of the science 

knowledge cycle that can be formalized for representation purposes. 

Foundational Ontology 

Ontology of Science  

Domain Science Ontologies 
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 Semantic Coverage: the breadth of the science knowledge cycle is to be encompassed 

such that SKIo could be extended with both general science and domain extensions. 

 Semantic Precision: sufficient depth is to be attained to enable annotation of scientific 

documents through instantiation of SKIo primitives, with a focus on science roles.  

 Extensibility: grounding in solid principles of the scientific knowledge cycle is to provide 

a rigorous and coherent basis for general and domain specific extensions. 

 Coherence: these same principles are to be formalized to enhance definition (and 

consequently understanding) of SKIo components.  

 

5. The SKI ontology  

5.1 The Science Knowledge Cycle 

Figure 1 shows some parts of the science knowledge cycle incorporated into SKIo. In this cycle: 

(1) empirical regularities are induced from observed data, (2) theoretical propositions are abduced 

from all prior knowledge, (3) predictions about the real world are deduced from empirical patterns 

or theoretical statements, and (4) predictions are verified through further interaction with the 

world, which involves activities such as data collection, problem finding, and building models of 

the world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: the knowledge cycle in SKI (after Sowa, 2000; 2006). 
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5.2 SKIing with DOLCE 

The DOLCE 2.1 (OWL 397) ontology consists of four core classes which categorize particulars 

(individual entities in the world): endurant, perdurant, quality, and abstract. An endurant is an 

object-like entity that is wholly present at any point in time it exists, but whose characteristics can 

change over time (rock body, building, country); a perdurant is a process-like entity that is not 

wholly present at any point in time it exists, such as a process, event, or state (San Andreas 

faulting, San Francisco earthquake, being seismically active); a quality is a dependent 

characteristic inherent in an endurant, perdurant, or abstract, such that an endurant inheres 

physical qualities (geospatial position, size, shape, color), an perdurant inheres temporal qualities 

(duration, age), and an abstract or non-physical-endurant inheres abstract qualities (the value of 

the Canadian dollar); an abstract is an entity that does not posses physical or temporal qualities, 

and is often the value of a quality or a space containing those values (the number 2, the munsell 

color space, red).  

 

SKIo extends the perdurant and endurant DOLCE classes with formalized versions of 

components of the science knowledge cycle: it extends the activity subclass of perdurant to 

include various scientific activities such as those for reasoning, observation, and verification; and 

it extends some physical and social subclasses of endurant (description, situation, concept, 

information-object, physical-endurant) to include scientific artifacts. Importantly, in order to 

foster reproducibility, each SKIo endurant is defined according to the scientific activity that 

produces it. 

 

Descriptions and Situations: DOLCE‘s descriptions and situations are initially designed to 

represent intensional socially constructed contexts and the related extensional states-of-affairs 

interpreted by those contexts, respectively (Gangemi & Mika, 2003). Although descriptions and 

situations have been used to model specific scientific domain theories and models (Gangemi et al., 

2004), they are extended by SKIo into general abstractions for science theory, science model, data, 

and concept definition, as shown in Figure 3, to provide scientific constraints on their meaning. 

Descriptions are thus viewed as scientific ideas that are syntactically expressed by DOLCE 

information-objects, such as text, tables, figures, reports, papers and web sites; 

information-objects are in turn externally and physically manifested in forms such as hardcopy or 

computer memories. A science theory is then a scientific idea comprised of one or more coherent 

descriptions that describe the structure or behavior of some aspect of reality in sufficient 

generality to satisfy, and be used to predict, a wide number of real-world particulars and the 

science models that contain them (Hars, 2003). In SKIo, a ScienceModel contains particulars 

which satisfy (are scientifically deducible from) some ScienceTheory, a science theory contains 

descriptions which are satisfied by (can be used to scientifically deduce) the particulars in the 

science model, and a description contains concepts that classify the particulars in a model. This 

intent is stated in A1 and implemented in SKIo as a deducible-by property on a particular, which 

takes as its range a Prediction indicating the particular is forecast by the prediction. 

 

(A1) ScienceTheory (T)  ScienceModel (M)  satisfies (T, M)   

                       (a  M) b (Deduction (T, b, a)  particular (a)  particular (b)) 
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class SKI Science Statements Diagram

Definition

+ defines:  Concept

+ prototype:  Particular [0..*]

Theory
Non-Agentive-Social-Object

Situa tion

+ setting-for:  particular [1..*]

Non-Agentive-Social-Object

Description

+ d-uses:  Con cept [1..*]

+  internally-represented-in:  Ag entive-Physical-Object [1..*]

Method

ScienceTheory

+ part:  Descri ption [0..*]

+  part-of:  Description [0..*]

+  satisfied-by:  ScienceModel [0..*]

+  plays:  Scien ceRole [0..*]

+  component:  Sci enceRole [0..*]

Scie nceM odel

+ product-of:  ScienceModeling

+ satisfies:  ScienceTheory [1..*]

+  setting-for:  (discovered-by Fact OR Prediction) AND (deducible-by Prediction) [1..*]

GeoSc ience Model

+ satisfies:  GeoScienceTheory [1..*]

+  setting-for:  GeoScienceEndurant AND Perdurant [1..*]

GeoScienceTheory

+ satisfied-by:  GeoScienceModel [0..*]

Da ta

+ product-of:  Activity

+  observed-quality:  Quality

+  expressed-by:  Dataset [1..*]

+  part:  Da ta [0..*]

Observ edData

+ product-of:  Observation

+ observed-quality:  PhysicalQuality OR TemporalQuality

+  part:  ObservedData [0..*]

+satisfied-by

0..*

+satisfies 1. .*

 

Figure 3: SKIo science model and theory (white) and DOLCE description and situation (grey). 

 

In SKIo, Data is also an intensional scientific idea, one that results from the observation or 

inference of some quality, for some purpose, by some agent in whom the description is internally 

represented, e.g. in an instrument. Underlying this conceptualization is the assumption that only 

physical and temporal qualities are observable, and that the inhering physical-endurants and 

perdurants are then inferred from the observed qualities as part of the science knowledge cycle. 

Data about abstract qualities are also typically inferred in SKIo, while descriptions about the 

physical or temporal qualities of some physical-endurant or perdurant, respectively, are obtained 

via observation (including measurement) and are called ObservedData. The syntactic expression 

of some data is a DataSet. SKIo also provides some specializations mainly for convenience: a 

GeoscienceModel contains geoscience endurants and perdurants, and is satisfied by 

GeoscienceTheories; and a Definition is a canonical idea included for sake of being 

explicit—DOLCE descriptions are implicitly definitions. 

 

Concepts: the DOLCE concept class is an intensional entity used to classify a particular within a 

situation to enable it to satisfy a description. DOLCE provides three types of concepts: role, 

course, and parameter, for classifying endurants, perdurants and quality regions, respectively. 

Concepts are typically related to descriptions in three ways in SKIo: (1) an atomic description 

(e.g. a theory part) d-uses concepts in its body to describe the idea, (2) atomic descriptions can 
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play a certain description-role concept within aggregate descriptions (e.g. within the theory as a 

whole), and (3) a description can maintain an index of the component concepts that classify 

situation members or description parts. For example, the theory of special relativity has as a part 

the idea e = mc
2
  that: (1) uses parameter concepts energy (e), mass (m), constant speed of light 

(c), (2) plays the role concept of Proposition within the theory, and (3) the role and parameter 

concepts are indexed as components of the theory. In subsequent theories the same idea can play 

the role of an Assumption and a ScienceProblem (Kaku, 2004). Figure 4 illustrates the complex 

relationships between scientific ideas, scientific statements, theories, and roles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: a SKI scenario for relationships between instances of a scientific idea (description D1), 

two science statements (S1, S2) that express the idea in different papers, two theories (T1, T2) that 

contain the idea, and the three roles (R1, R2, R3) played by the idea in the theories. 

 

Because the natural language terms for science roles are highly polysemous, SKIo also provides 

defining conditions in its OWL encoding for six of the seven science roles shown in Figure 5. 

 

 Assumption: is defined by an originating Assertion, and is considered to be a primitive 

such that it is not empirically supported nor inferred. 

 ScienceProblem: is defined by an originating ProblemIdentification activity operating 

over a theory part that is disconfirmed by observation or inconsistent with other theory. 

 Fact: is the incorporation of some Data into some theory. Because facts can only be 

played by data within some theory, they are always ‗theory-laden‘. Facts also support 

specification of the scientific discovery of a particular, insofar as a fact can indicate that 

some data has lead to identification of the particular, e.g. a rock body. 

 EmpiricalRegularity: is defined as an empirical pattern produced by Induction, one that 

is situational but not universal. Situational refers to the case where the regularity is 

satisfied by only a subset of the possibly valid science models. For example, if the 

regularity is expressed as a relation amongst concepts, then the relation is present only in 

some situations in which particulars classified by the concepts are jointly present, and not 

in all situations where they are jointly present. The regularity might not be present 

D1 

R1 R2 R3 

T1 

T1 

S2 

S1 
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universally because of insufficient verification or because the pattern is dependent on 

certain historical conditions that are temporary and change in time. This is implemented 

in SKIo by requiring the regularity‘s existence to be dependent on one or more endurants 

or perdurants, likely some subset of those involved in its original induction. 

 ScienceLaw: is defined as an universal empirical pattern produced by Induction, i.e. its 

existence is not dependent on any specific endurants or perdurants. Empirical regularities 

and science laws can evolve toward each other as a consequence of the logic of induction: 

a pattern might be scoped as situational but more data might suggest it to be universal, 

and conversely more data might contradict a science law and demonstrate it to be 

situational.  

 Prediction: is defined as a conjecture about individuals produced via Deduction, which 

can be empirically verified. Because only physical and temporal qualities are observable, 

it follows only these qualities are predictable. SKIo does not impose this constraint, as it 

is sometimes convenient as a shorthand to predict individuals as well as qualities. 

 Proposition: is a best-guess conjecture produced via Abduction from prior theory or data, 

and which can be situational or universal. Scientific propositions are analogous to logical 

propositions in that scientific propositions are eventually verifiable (are testable against 

the world) while logical propositions are eventually resolvable to True or False (are 

testable against a logical system). 
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class SKI Science Statements Diagram

Scienc eRole

+ played-by:  Description

+ defined-by:  Definition

+ component-of:  Sci enceThroey [1..*]

+  discovere d-by [0]

Prediction

+ product-of:   Deduction

ScienceLaw

+ product-of:   Induction

+ confirmed-by:  Ve rification [1..*]

+  existentially-dependent-on:  NOT Endurant OR Perdurant

Propos ition

+ product-of:   Abduction

+ existentially-dependent-on:  Endurant OR Perduant [0..*]

Fa ct

+ played-b y:  Data

+ verified-by:  Verification [0..*]

+  discovery:  particular [0..*]

Science Problem

+ product-of:  Prob lemIdentification

+ problem-in:  Fact OR InferredRole [1..*]

InferredRole

+ product-of:   Inference

+ verified-by:  Verification [0..*]

+  discovery:  particular [0..*]

Assumption

+ product-of:   Assertion

EmpiricalRegularity

+ product-of:   Induction

+ confirmed-by:  Ve rification [1..*]

+  existentially-dependent-on:  Endurant OR Perdurant [1..*]

Description-Role

+ played-by:  Description [0..*]

Non-Agentive-Social-Object

Conc ept

+ defined-by:  Description [1..*]

Role

 

Figure 5: SKIo science roles (white) and DOLCE concepts (grey). 

 

Activities: DOLCE activities are non-atomic perdurants that follow some plan, sequence some 

tasks, can produce some endurants, and are performed by some agents. In SKI the plan is likely 

some research project containing tasks performed by scientists. DOLCE activities are extended by 

SKIo through the addition of properties for the agents‘ motivation and for the entities upon which 

the activity is being performed. SKIo includes activities for observation, inference, assertion, 

verification, problem finding, science modeling, and doing research. These activities are important 
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because their products are key SKIo elements, such as science models, science roles, and science 

statements, as shown in Figure 6.  class SKI Core Diagram

Observ ation

+ product:  ObservedData [1..*]

+  instrument:  ObservationInstrument

+ performed-on:  Physical-En durant OR Perdurant [0..*]

Activ ity

+ generically-depende nt-on:  Plan [1..*]

+  part:  Act ion [1..*]

+  sequenced-by:  Task [1..*]

+  performed-by:  Agent [0..*]

+  instrument:  Physi cal-Object [0..*]

+  has-method:  Method [0..*]

+  product:  End urant [0..*]

+  result:  Perd urant [0..*]

+  motivated-by:  Cognit ive-Modal-Description

+ performed-on:  Enduran t OR Perdurant [0..*]

Induc tion

+ product:  EmpiricalRegularity OR ScienceLaw

+ performed-on:   Data [1..*]

Deduc tion

+ product:  Prediction

+ performed-on:  (Fact OR Prediction) AND (Proposition OR EmpiricalRegularity OR ScienceLaw)

Abduction

+ product:  P roposition

+ performed-on:  ScienceRole [1..*]

Inference

+ product:  InferredRole

+ performed-on:  Data OR ScienceRole  [1..*]

Verification

+ performed-on:  ScienceRole [1..*]

ProblemIdentification

+ product:  ScienceProblem

+ performed-on:  ScienceRole [1..*]

Assertion

+ product:  Assumption

+ performed-on:  ScienceRole [0..*]

Rese arch

+ product:  Description OR Informat ion-Object OR ScienceModel [0..*]

+  funded-by:  Agent [0..*]

PredictionTesting

+ performed-on:  Fact  AND Prediction

ScienceM odeling

+ product:  ScienceModel

 

Figure 6: SKIo scientific activities (white), and the DOLCE activity class (grey). 

 

Of particular importance are the Inference activities because they bind together much of the 

knowledge cycle (after Sowa 2000; 2006): 

 

 Induction: involves finding a pattern in data (logical induction), or dis/confirming a 

pattern via data collection (pragmatic induction). In logical induction: given data { (a1, 

b1), (a2, b2), (a3, b3) } then infer f (A, B), where f is some relation over concepts A,B, and 

ai and bi are their respective instances. In pragmatic induction, given f (A, B), note in data 

{ (a1, b1), (a2, b2), (a3, b3) } and infer f (A,B) ╞ TRUE or FALSE, possibly with the aid of 

intermediary predictions. SKIo Induction refers to logical induction, while Verification 

encompasses pragmatic induction and can operate on any science role. 

 Deduction: involves generating a Prediction about the world using existing theory and 

data.  Logically, given theory T:AB (A and B are concepts) and instance a1 (of A), 

then b1 (of B) is deduced:  T ^ a1 ├ b1. 

 Abduction: involves generating a Proposition to enable coherence of discordant scientific 
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knowledge elements. In SKIo, Abduction encompasses both logical and pragmatic 

abduction. Logical abduction is reverse deduction: in a deduction of the form T: AB, 

where T is a theory and A and B are concepts, given data b1 (instance of B) and some or 

none of T and a1 (an instance of A), then guess the missing T and/or a1. Pragmatic 

abduction, on the other hand, is more concerned with the mechanism of guessing missing 

theories and data from prior knowledge (often via analogy ~): given CD, and A~C  

B~D, then T:AB. 

 

6. Application of SKIo to Environmental Theories 

Adams et al. (2004) summarizes and compares the mathematical formulation of ten ―models‖ 

(ScienceTheories in SKIo) of terrestrial net primary production (NPP). The theories are expressed 

primarily as systems of equations containing (1) input variables and (2) fixed values divided into 

general constants (e.g. atmospheric pressure) and specific parameters (e.g. photosynthesis 

co-limitation). The theories can be categorized into biogeographic or biochemical, where the 

former are empirically inferred from data, and the latter are derived from existing theories and 

express biochemical processes more explicitly. Some of these theories share a few ancillary 

theories which were obtained from other sources such as books or web pages.  SKIo 

representation of all these elements involves the following instances of SKIo classes: 

 

 Each paper, book, and web site that expresses the theories is represented as an instance of 

SciencePublication containing ScienceStatements.  

 Each equation, or other theory part such as a table or figure, is expressed as a distinct 

instance of ScienceStatement. 

 The intensional description of each theory is represented as a whole ScienceTheory 

instance, and is expressed by the relevant SciencePublication instances. 

 The intensional description of each equation, or other theory part, is represented as a 

ScienceTheory part instance, and is expressed by the relevant ScienceStatement instances. 

 The variables and fixed values in each equation are represented as DOLCE parameter 

classes, an instance of each is d-used by each equation with a value in a region instance. 

 Each part of each empirically inferred theory is represented as an EmpiricalRegularity 

instance, because these are largely induced from empirical data and are local to Earth 

situations (the fixed values are calibrated to the Earth environment). 

 The parts of the theories that were derived from other theories play a Proposition science 

role, because these are theoretically postulated (hence via abduction).  

 Some theories share common parts which, however, play different roles amongst the 

theories.  For example, a theory developed by King et al. (1995) adopts a Proposition 

from Polglase and Wang (1992) as an Assumption. 

 Many of the theories, such as the Miami Model (Leith, 1975), are satisfied by well 

known ScienceModel instances which are either based on empirical data (contain 

particulars generated from observed facts) or predictions (contain particulars created as a 

result of deduction using the theory and observed input data). 

 The activities and data which led to the origin of each theory, or theory part, are not 

represented in this exercise, mainly because that information was not readily available 

amongst our sources. 
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Figure 7a and 7b show how the BIOME3 model, one of the 10 NPP models, can be represented in 

SKIo. 

 

 

Figure 7a: an example representation of part of a environmental theory and model in SKIo. 
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object SKI Instance Example

BIOM E3 :

ScienceTheory

BIOM E3 NPP 

Equation :

ScienceTheory

BIOME3  NPP :

NPP

BIOME3 

PhotosynthesisRate :

PhotosynthesisRate

BIOME3 

EmpiricalRegularity #1 :

EmpiricalRegularity

BIOME3 #1  Model :

Scie nceM odel

BIOME3 #2  Object :

GeoScienceObject

BIOM3 #4 

PhotosynthesisRate :

Quality

BIOME3 # 3 NPP :

Quality

Rate #2 :RateRegion

::Rate Region

+ value:  double = 300.3

Haxeltine & Prentice, 1996 :

SciencePublication

BIOME3 Induction #2 :

Induc tion

Rate #1  :RateRegion 

::RateReg ion 

+ value:  dou ble = 100.1

+part

+plays

+d-uses

+component

+satisfied-by

+satisfies

+setting-for +has_quality +q_location

+has_quality +q_location

+valued-by

+valued-by

+expressed-by

+product

+product-of

+d-uses

 

Figure 7b: an example representation of part of an environmental theory and model in SKIo; in 

the box labels the text before the colon denotes the instance name, and the text after the colon 

denotes the SKIo class name. 

 

7. Discussion 

Achievements: The SKIo ontology meets the representation requirements outlined in the 

introduction and in the environmental use-case scenario. It clearly and formally distinguishes 

between general scientific knowledge primitives, such as models and theories, and is shown to 

adequately represent environmental knowledge as documented in peer reviewed papers. As a 

result, when SKIo is coupled to a fully operational and semantically-enabled SKI, it should 

facilitate the search, retrieval and use of the basic science knowledge primitives. For example, 

knowledge about NPP could then be obtained by searching for the science theories that use the 

NPP concept. If the user is interested in the correlation between annual average temperature and 

NPP, then the Miami Model and the theory of King et al. (1997) could be retrieved, including a 

predicted model of world NPP.  

 

Evaluation: SKIo is evaluated according to the principles outlined in Section 4. Formality and 

modularity are achieved through its extension of DOLCE and the independent OWL encoding, 

respectively. It is grounded in reasoning accounts of the science knowledge cycle, and includes 

science knowledge primitives of sufficient coverage and precision to enable at least environmental 

theories, and we suppose other science theories, to be adequately represented. Ontological 
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representation of the principles behind the knowledge cycle were shown to help disambiguate the 

polysemous use of natural language terms, e.g. ―model‖. 

 

Implementation: implementation of SKIo for full support of e-Science is a future activity. 

Immediate prospects include incorporation of SKIo into existing e-Science infrastructures that use 

ontologies to enable information discovery, retrieval and workflow operation. Future prospects 

include use of SKIo-enabled science resource to create and test science knowledge in SKI. This 

might include using SKIo to support web services for operating over science models as sketched 

in Figure 8. 

 

Figure 8: using SKIo in an environmental modeling SKI 

Limitations: several limitations were encountered during design and application of SKIo: 

 

 completeness: SKIo is incomplete in several areas, most notably in representing common 

science methods, instruments, activities, information objects and science metadata. 

 change: representing scientific knowledge change, such as theory change, using existing 

constructs such as perdurants is largely uncharted territory that needs more exploration. 

 grounding: DOLCE does not provide adequate guidelines for distinguishing between the 

ground ontology (non-social classes) and social classes (contextualized entities). For 

example, should atmospheric pressure be a ground quality or a social parameter, or both? 

If so, why? Although SKIo provides a mechanism for representing the migration of a 

scientific idea from conjecture (social artifact?) to accepted dogma (ground 

artifact?)—i.e. the epistemology—the design choice for extending from a social or 

ground class needs more rigorous attention. 

 instantiation: mechanisms are required to limit instantiation of unwanted but mandatory 

DOLCE classes triggered by SKIo instantiations. 

 

8. Conclusions 
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SKIo is an ontology of science that bridges the gap between a general foundational ontology and 

specific domain science ontologies. It accomplishes this by extending the DOLCE foundational 

ontology with general science primitives common to all science domains, such as theories, models 

and data, derived from computational accounts of the science knowledge cycle. Initial testing, 

involving representation of several environmental theories, confirms the effectiveness of SKIo‘s 

overall scope and design, and lends support for the notion that such representations will advance 

next-generation e-Science by facilitating not only search, retrieval, integration and workflow 

operations in e-Science infrastructures, but also the discovery and testing of scientific artefacts. 

Next steps include further testing with a variety of science knowledge from various domains, 

integrating with existing domain science ontologies, and incorporation into functioning e-Science 

infrastructures. 
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