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Guy De Tré3, Philippe De Maeyer1 and Nico Van de Weghe1

1
Department of Geography, Ghent University, Ghent, Belgium. 2Department of Archaeology, Ghent University,

Ghent, Belgium. 3Department of Telecommunications and Information Processing, Ghent University, Ghent, Belgium

Email: yi.qiang@ugent.be

Rough set and fuzzy set are two frequently used approaches for modelling and reasoning about imperfect time intervals. In

this paper, we focus on imperfect time intervals that can be modelled by rough sets and use an innovative graphic model

[i.e. the triangular model (TM)] to represent this kind of imperfect time intervals. This work shows that TM is

potentially advantageous in visualizing and querying imperfect time intervals, and its analytical power can be better

exploited when it is implemented in a computer application with graphical user interfaces and interactive functions.

Moreover, a probabilistic framework is proposed to handle the uncertainty issues in temporal queries. We use a case study

to illustrate how the unique insights gained by TM can assist a geographical information system for exploratory spatio-

temporal analysis.

Keywords: rough sets, imperfect time interval, the triangular model, geographical information system, spatio-

temporal analysis

INTRODUCTION

Every entity has an extent in time, such as the lifetime of an
object or the duration of an event. These temporal extents
are usually described by crisp time intervals bounded by a
well-defined start and end point. However, under some
circumstances, the temporal extent of an entity is imperfect,
and cannot be adequately modelled by a crisp time interval.
On the one hand, some events may start or end gradually
and therefore their start and end points cannot be pinned to
exact time stamps. For example, it is difficult to decide
when the industrial revolution started and finished.
Intervals of this kind of events are usually modelled by
fuzzy sets (Zadeh, 1965) through the quantification of the
graded truth of whether a time point is in the interval,
bringing the concept of fuzzy time interval. On the other
hand, in some other cases, it is only known that the start
and end of a crisp interval are within certain ranges, but no
extra information or assumptions about the distribution of
the start and the end is available. Modelling this kind of
imperfect time intervals with fuzzy sets would induce extra
overhead and unnecessary complexity. In these cases, the
alternative approach, i.e. rough sets (Pawlak, 1982), can
excellently suit the modelling and handling of time
intervals. Currently, a lot of disciplines are faced with the

issue of imperfect time intervals, which is reflected in many
contributions in modelling intervals by fuzzy sets (De
Caluwe et al., 1997, 1999; Nagypál and Motik, 2003;
Ohlbach, 2004; Schockaert et al., 2008; Garrido et al.,
2009) and rough sets (Bittner, 2002; Bassiri et al., 2009).
However, while most of this work focuses on modelling and
reasoning about imperfect time intervals, techniques and
tools for visualizing and analysing imperfect time intervals
are still lacking. This probably stems from the conventional
representation of time intervals (e.g. Gantt chart, time table
and historical timeline) which represents time intervals as
linear segments along a one-dimensional time line. The
second dimension is often exploited merely to differentiate
intervals of entities and has no temporal meaning. In this
representation, the visual distribution of intervals is variable,
according to the application of different ordering rules in
the second dimension, for example, ordering intervals from
the shortest to the longest, or from the earliest started to
the latest started. The characteristics of the distribution of
intervals cannot be observed in one single display. This is
not convenient for visual pattern detection of time intervals,
let alone imperfect time intervals with more complex
structure.

This issue also exists in geographical information science
(GIScience), which considers time as one of the most
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important component of geographical information (Macea-
chren et al., 1999; Peuquet, 2002; Li and Kraak, 2008;
Neutens et al., 2008). In the recent development of
GIScience, considerable effort has been made in handling
the temporal aspect of geographical data (Andrienko et al.,
2003, Smith et al., 2007, Neutens et al., 2007). Due to the
limitations of data acquisition techniques, spatial data are
often linked to imperfect temporal information. Dealing
with imperfect temporal information becomes an increas-
ingly significant issue in spatio-temporal data analysis,
particularly in exploratory spatio-temporal data analysis
(ESTDA) which greatly relies on graphical representations
and visualisations. Since most prevalent techniques and
tools of ESTDA represent time in the linear form, their
ability in dealing with temporal imperfectness in spatio-
temporal data is still not satisfactory.

To address these issues, attempts have been made to
represent time in a two-dimensional (2D) space. For
example, Keim et al. (2006) arranged time series of financial
investments in a 2D representation called the growth
matrix. This matrix is able to display the growth rates of
investments in all possible sub-intervals in the time series.
The TT-plot introduced by Imfeld (2000) applied a similar
idea to analyse movement patterns. Besides these
approaches, Kulpa (1997) proposed the ER diagram that
represents time intervals as 2D points, and investigated the
use of this diagram for interval reasoning and arithmetic.
Later, Van de Weghe et al. (2007) named this representa-
tion the triangular model (TM) and applied it in an
archaeological context. Recently, Qiang et al. (2009, 2010)
have extended TM to represent time intervals modelled by
rough sets and fuzzy sets. This work majorly focussed on
the use of TM in temporal reasoning. The practical value of
TM in visualizing and analysing imperfect time intervals is
still yet to be exploited.

To fill this gap, this paper investigates the use of TM in
visualizing and analysing imperfect time intervals. The focus
is on imperfect time intervals that can be modelled by rough
set theory. A probabilistic framework is proposed to model
the uncertainties in the temporal relations of such roughly
described intervals. In order to better demonstrate the use
of TM, a prototype tool is introduced, which implements
TM in a geographical information system (GIS). This tool
support analysis of geographical entities with imperfect
intervals. We show that the advantages of TM in visualizing
and querying roughly described intervals can be better
exploited through a computer application with a graphical
user interface (GUI) and interactive functionalities. In
addition, we use a case study to illustrate how the unique
insights gained by TM can assist a GIS for ESTDA
involving imperfect time intervals.

In the remainder of the paper, we first introduce the basic
concept of TM and how rough approximations of intervals
are represented in TM. In Section on ‘Probabilities of
Rough Approximations’, we apply probability theory to
model uncertainties in temporal queries of imperfect
intervals. Section on ‘Implimentation’ presents GeoTM,
including its GUI, functionalities and supported data
model. In Section on ‘Case Study’, the use of GeoTM is
demonstrated in a concrete use case. The paper ends with a
brief conclusion and an outline of avenues for future work.

All notations and symbols used in this paper are summar-
ized in the table in the Appendix.

TRIANGULAR MODEL

Representation of time intervals

A time interval I is usually modelled as a convex set of real
numbers, i.e. [I2,Iz] with I2,Iz. I2 and Iz respectively
denote the start and end of I. In the traditional linear
representation, a time interval is represented by a finite
linear segment bounded by I2 and Iz (see Figure 1a). This
linear representation of time intervals is widely used in our
daily life, for example time tables and historical time lines.
The transformation from the linear representation of a time
interval to TM can be achieved by constructing two lines

Figure 1. The transformation from the linear representation to tri-
angular model (TM): (a) the linear representation of time intervals,
(b) the construction of an interval point in TM, (c) the TM repre-
sentation of time intervals
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through the extremes of an interval (Figure 1b). For an
arbitrary interval I, two straight lines L1 and L2 are
constructed, with L1 passing through I2 and L2 passing
through Iz. a1 is the angle between L1 and the horizontal
axis and a2 is the angle between L2 and the horizontal axis,
with a152a25a. The intersection of L1 and L2 is called the
interval point. The angle a is a predefined constant which is
identical for all intervals to ensure that every interval is
mapped to a unique point in the 2D space. Although a can be
any value between 0 and 90u, we consider a545u for
consistency with earlier work (Kulpa, 1997, 2006; Van de
Weghe et al., 2007; Qiang et al., 2010). In this way, TM
represents all time intervals as points in a 2D space, which is
called the interval space (Figure 1c). The interval space is
denoted as I (Kulpa, 2006). In I , given an interval point
I, the horizontal position indicates its midpoint [e.g. mid(I)]
and the vertical position indicates its duration [e.g. dur(I)].

Representation of temporal relations

Allen (1983) specified 13 possible relations between two
time intervals (see Table 1), which are referred to as Allen
relations. In TM, every Allen relation can be represented as
a specific zone (Kulpa, 1997). Given a study interval Is5[0,
100], in TM all examined intervals are located within the
isosceles triangle formed by I{

s , I{
s and I. Let us consider,

for example, a reference interval I2 [33, 66]. Any intervals
(e.g. I1a, I1b and I1c) before I2 (Figure 2a) are located in the
triangular area in the left corner of the study area
(Figure 2b). Therefore, it is easy to deduce that all intervals
before I2 must be located in the black zone in Figure 2c,
which is called the before zone of I2. Likewise, all Allen

relations with respect to an interval can be represented by
zones in I (Figure 3), which are called relational zones.
For each relation in Figure 3, the reference interval I has
been chosen in the centre of the study period in order to
avoid visual bias. Each relational zone represents the set of
intervals that are in a specific relation to the reference
interval I, which are denoted as Rel(I). For example, the
during zone of I represents the set of intervals that are
during I and is denoted as during(I). On the other hand,
Rel(I1,I2) expresses the statement that I1 is in the relation
Rel to I2. For example, overlaps(I1,I2) expresses that I1

overlaps I2.

Representation of rough approximation

Incomplete information may result in uncertainties about
the exact start and end of a time interval. This may happen
in many observation activities in which data are acquired at
discrete time stamps, such as images or photographs in
remote sensing. From a sequence of images, for example,
one can determine whether a feature exists at specific time
stamps. However, the feature’s status between two time
stamps is unknown. With these discrete snapshots, the
interval of the feature’s existence is thus imperfect. If there
is no prior knowledge about the distribution of the start
and end, modelling this kind of imperfect time intervals
with membership functions of fuzzy sets would induce extra
overhead and unnecessary complexity. In these cases, rough
sets can be considered as an appropriate and adequate
solution (Bittner, 2002; Bassiri et al., 2009).

In the rough set approach, an imperfect time interval I is
described by an upper approximation �II and a lower
approximation I, with I(�II (Figure 4). We call such a pair
of I and �II the rough approximation of I, which is denoted
as R(I). Time points in I are definitely in I, whereas all time
points not in �II are definitely not in I. �II is bounded by the
earliest possible start �II{ and the latest possible end �IIz,
while I is bounded by the latest possible start I{ and the
earliest possible end Iz. In between I and �II, there are two
rough boundaries R(I2) and R(Iz) gathering the time
points that are possibly in I. Unlike fuzzy time intervals
which define the extent to which the time points are
possibly in I, the rough approximation of I classifies time
points into definitely in, definitely not in and possibly in I.

In the linear representation, the rough approximation of
an interval is usually represented as a tripartite linear
segment (Figure 5a). However, in TM, a rough approx-
imation of an interval is represented by a convex 2D

Table 1. Thirteen Allen relations (Allen, 1983)

I1 equal I2 if I{
1 ~I{

2 ˆ Iz
1 ~Iz

2
I1 starts I2 if I{

1 ~I{
2 ˆ Iz

1 vIz
2

I1 started-by I2 if I{
1 ~I{

2 ˆ Iz
2 vIz

1
I1 finishes I2 if Iz

1 ~Iz
2 ˆ I{

1 wI{
2

I1 finished-by I2 if Iz
1 ~Iz

2 ˆ I{
2 wI{

1
I1 meets I2 if Iz

1 ~I{
2

I1 met-by I2 if Iz
2 ~I{

1
I1 overlaps I2 if I{

2 wI{
1 ˆ Iz

1 vIz
2 ˆ Iz

1 wI{
2

I1 overlapped-by I2 if I{
1 wI{

2 ˆ I{
1 vIz

2 ˆ Iz
2 vIz

1
I1 during I2 if I{

1 wI{
2 ˆ Iz

1 vIz
2

I1 contains I2 if I{
2 wI{

1 ˆ Iz
2 vIz

1
I1 before I2 if Iz

1 vI{
2

I1 after I2 if Iz
2 vI{

1

Figure 2. Temporal relations in the linear model and triangular model (TM), taking before as an example: (a) I1a, I1b, I1c and I2 in the linear
representation, (b) I1a, I1b, I1c and I2 in TM, (c) the before zone of I2
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geometry in I . To construct a rough approximation R(I)
in TM, two parallel lines are projected from �II{ and I{ with
angle a to the horizontal axis, and the other two lines are
projected from Iz and �IIz with angle 2a to the horizontal
axis. These four lines form a rectangle (Figure 5b) which
indicates a zone where the exact interval I can be found. In
other words, this zone represents the set of intervals that
are possibly equal to I. The shape and location of the
rectangle completely express the characteristics of R(I). In
this way, the rough approximation of a time interval can be
represented by such a rectangle (Figure 5c). If the lower
approximation is empty, the rough approximation becomes
a triangle on the horizontal axis, e.g. I2 in Figure 5.

PROBABILITIES OF ROUGH APPROXIMATIONS

Because time intervals described by rough approximations
have an uncertain start and an uncertain end, temporal
queries about such rough time intervals may result in
uncertain answers. To handle the uncertainties in temporal
queries, a probabilistic framework is needed. Given a rough
approximation R(I), R(I2) and R(Iz) define the ranges
where the exact start I2 and the exact end Iz can be found
(equations (1) and (2)). As there is no further knowledge
about the distribution of I2 and Iz in R(I2) and R(Iz),
we assume that the probability distributions in R(I2) and
R(Iz) are uniform. That is to say, every time point in R(I2)
has the same probability of being equal to I2 (i.e.
equation (3)). Therefore, the probability density of x5I2

[where x 2 R (I2)] is the quotient of 1 and the cardinality
of R(I2) (equation (4)). In the same way, every time point

in R(Iz) has the same probability of being equal to Iz

(equation (5)), and therefore the probability density of
x5Iz [where x 2 R(Iz)] is the quotient of 1 and the
cardinality of R(Iz) (equation (6)). Based on these
prerequisites, it can be deduced that every interval in R(I)
has the same probability of being equal to I (equation (7)).
Because R(I) defines the interval set that includes I
(equation (8)), the probability density of x5I [where x 2
R(I)] is the quotient of 1 and the cardinality of R(I)
(equation (9)). Therefore, R(I) can be considered as an
interval set in which every interval has the same probability
of being equal to I. Because TM maps time intervals into
points in a 2D space, the cardinality of an interval set is
proportional to its area, and therefore the probability
density of x5I [where x 2 R(I)] is inversely proportional to
the area of R(I) in TM (see equation (9)).

According to equation (9), it can be deduced that, given
a set of intervals A and a rough approximation R(I) (such as
Figure 6), the probability that I is in A is the ratio between
the cardinality of A\R(I) and the cardinality of R(I)
(equation (10)). In the TM representation, this probability
is the ratio between the area of A\R(I) and the area of
R(I) (equation (10)). If R(I) is totally contained in A (i.e.
R(I)(A), the probability that I is in A is 1. If R(I) and A do
not intersect [i.e. R(I)\ a~1], the probability that I is in
A is 0. The interval set A can also be a relational zone of a
certain interval, e.g. before(I9). In this case, the probability
that I is in A can be interpreted as the probability that I is
before I9. With respect to the principles of probability
theory (Jaynes and Bretthorst, 2003), the probabilities of
multiple rough approximations can be deduced. For
example, given an interval set A and two independent
rough approximations R(I1) and R(I2) (Figure 7), the
probability that only one of I1 and I2 is in A can be
obtained from equation (11), and the probability that both
I1 and I2 are in A can be obtained by equation (12).
Analogously, given an interval set A and n independent
rough approximations, i.e. R(I1), R(I2), …, R(In), the
probability that m intervals (0(m(n) are in A can be
obtained by equation (13). Since interval sets and rough
approximations of intervals are represented as 2D geometries

Figure 3. Relational zones representing sets of intervals in certain Allen relations to the reference interval I

Figure 4. The linear representation of the rough approximation
of I

268 The Cartographic Journal
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in TM, the probability that an interval is in an interval set is
expressed by the overlap ratio of their geometries. This feature
of TM is similar to Venn diagrams (Venn, 1881) in which the
areas represent the occurrences of a certain event and the
intersection of areas expresses the coincidence of events.
Compared with mathematic formulas, we contend that such
graphic representation is more intuitive for human beings.
Hence, TM can be considered as a promising platform for
visual queries of intervals described by rough approximations.

X
x[R(I {)P(I {~x)~1 (1)

X
x[R(I z)P(I z~x)~1 (2)

P(I {~x1)~P I {~x2ð Þ, x1,x2 [R(I {) (3)

fI { (x)~P(I {~x)~
1

jR(I {)j , x [R(I{) (4)

P(I z~x1)~P I z~x2ð Þ, x1,x2 [R(I z) (5)

fI z (x)~P(I z~x)~
1

jR(I z)j , x [R(I z) (6)

P(I~I1)~P(I~I2), I2,I2 [R(I ) (7)

X
x[R(I )P(I~x)~1 (8)

fI(x)~P(I~x)~
1

jR(I )j!
1

Area½R(I )� , x [R(I ) (9)

P(I[A)~
X

x[A

1

jR(I )j~
jA\R(I )j
jR(I )j ~

Area(A\R(I ))

Area(R(I ))
(10)

Figure 5. The transformation from the linear representation to the
triangular model (TM) representation of rough approximations of
intervals: (a) rough approximations of intervals in the linear repre-
sentation. Full lines denote I, and dashed lines denote R(I 2) and
R(Iz). The combination of full lines and dotted lines forms �II, (b)
the construction of the rough approximation of an interval in TM,
(c) rough approximations of intervals in TM

Figure 6. An arbitrary interval set A and an arbitrary rough
approximation R(I)

Figure 7. An arbitrary interval set A and two arbitrary rough
approximations R(I1) and R(I2)
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ty P(either I1 or I2 is in A)~P(I1[A ^ I2 =[A)zP(I1 =[A ^ I2[A)

~P(I1[A)|P(I2 =[A)zP(I1 =[A)|P(I2[A)

~
jA\R(I1)j
jR(I1)j |

jA{½A\R(I2)�j
jR(I2)j z

jA\R(I2)j
jR(I2)j |

jA{½A\R(I1)�j
jR(I1)j

Area½A\R(I1)�|Area½A{A\R(I2)�zArea½A\R(I2)�|Area½A{A\R(I1)�
Area½R(I1)�|Area½R(I2)�

(11)

P(both I2 and I2 are in A)~P(I1[A)|P(I2[A)

~
jA\R(I1)j
jR(I1)j |

jA\R(I2)j
jR(I2)j

~
Area½A\R(I1)�

Area½R(I1)� |
Area½A\R(I2)�

Area½R(I2)�
(12)

P(m intervals of I1, I2, . . . ,In are in A)~

X

Q(S

½P
i[Q

P(Ii[A)|P
j[(S{Q)

P(Ij =[A)�,

S~(1,2,3, . . . ,n) ^Q (S ^ jQ j~m (13)

IMPLEMENTATION

To demonstrate and exploit practical uses of TM, we have
implemented TM into a prototype tool (i.e. GeoTM) which
incorporates TM into a GIS. GeoTM allows visualizing,
querying and analysing spatio-temporal data. More speci-
fically, it is able to handle discrete entities with spatial
locations and temporal extents. The spatial locations are
modelled as vector geometries (i.e. point, line and
polygon), while the temporal extents are modelled as time
intervals. In this paper, we will take special care of time
intervals described by rough approximations. Besides spatial
and temporal extents, these geographical entities may have
other attributes. The spatial locations, temporal extents and
other attributes are linked to geographical entities by
unique identifiers (ID) of entities. GeoTM is built on

top of ArcGISTM which is a desktop GIS produced by
ESRI (Redlands, CA, USA). Within its object model
(ArcObjects), developers can call on existing functions
and components of ArcGISTM to develop customized
applications. Consequently, GeoTM is compatible with
the supported data formats in ArcGIS, such as shapefile and
dBASE files. In the representation of geographical entities,
spatial locations and geometries of time intervals are stored
in two shapefiles, while the attributes are stored in a
database table (i.e. a dBASE file). Figure 8 gives an
overview of how geographical entities are modelled and
represented in GeoTM.

GUI of GeoTM

The user interface of GeoTM consists of a map view, a TM
view and controls that can trigger specific functions or user
forms (Figure 9). The map view is used to display spatial
locations of geographical entities, which are modelled as
points, lines or polygons. The TM view displays time
intervals of entities, using the TM representation. Rough
approximations of intervals are represented as polygons. In
the TM view, there may exist overlaps of polygons. In order
to display the pattern of overlapped polygons, gradual
colours are assigned to areas according to the numbers of
overlaps: a darker colour is assigned to the areas with more
overlaps. In Figure 9, a dataset of military features in the
World War I (WWI) is displayed in GeoTM. The spatial
locations of these features are displayed in the map view,
while their lifetimes (represented by rough approximations
of intervals) are displayed in the TM view. In this section,
we use this dataset to illustrate the functionalities of
GeoTM. The entire scenario of this dataset will be
described in Section on ‘The Case Study’. The temporal
resolution of the dataset is one day. Thus, in this context, a
time interval is the period between two specific dates
formatted as year/month/day.

Users can interactively browse the map view and TM view
by zooming and panning. In the map view, objects can be
selected by dragging a rectangle. In the TM view, special
selection tools have been designed to select intervals
according to specific temporal queries, which will be
described in detail in the next sub-section. Other attributes
of entities are stored in the attribute table that can pop up
when the user clicks the corresponding button. ‘Linked
brushing’ is supported among the map view, the TM view
and the attribute table. This function allows selecting
objects from any of these three views and dynamically
updating the other two views to highlight the correspond-
ing objects. With this function, geographical entities in
GeoTM can be queried with spatial, temporal and attribute
constraints. Additionally, many common functions of a
conventional GIS are supported in GeoTM. For example,
several datasets can be loaded into GeoTM as multiple
layers.

Temporal queries in GeoTM

As introduced in Section on ‘Representation of temporal
relations’, intervals that satisfy a certain temporal relation
are located within a relational zone. Thus, queries based on
temporal relations can be modelled as specific zones in TM,

Figure 8. Representation of spatio-temporal data in GeoTM

(11)
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i.e. query zones. A query zone can be a relational zone or
combinations (e.g. intersection and union) of multiple
relational zones. Whether an interval satisfies the temporal
query depends on whether the interval point lies within the
query zone. However, when intervals are described by
rough approximations, in TM the rough approximation can
be partially in the query zone. If this is the case, temporal
queries can be answered with probability thresholds. For
example, within a dataset of rough approximations of
intervals, one can select all intervals that have more than
90% probability of being during an indicated interval. In
TM, this query is expressed by selecting rough approxima-
tions that have more than 90% of its area in the before zone
of the indicated interval. Therefore, in the TM view of
GeoTM, querying tools are available to define temporal
queries by creating query zones. On the one hand, users can
indicate an interval by moving the cursor to a specific
position in the TM view. When right-clicking on this
position, a drop-down menu of Allen relations appears.
Next, by clicking an Allen relation in the menu, all intervals
in this relation are selected, according to a pre-defined
probability threshold. Figure 10 shows an example of
selecting intervals that are probably before [1916/06/25,
1917/05/31]. In this example, the lower probability
threshold is 0.6 and the upper probability threshold is 1.
As a result, intervals with more than 60% probability before
[1916/6/25, 1917/5/31] are selected.

Besides temporal queries of Allen relations, some other
queries can be made by dragging specific geometries in the
TM view. For example, a convex set of intervals can be
selected by dragging a rectangle whose sides are in a or 2a
angle to the horizontal axis (Figure 11a). A convex interval
set is defined as the set of time intervals in-between two
different time intervals (Kulpa, 2006). We developed this
query tool because convex interval sets can be easily
interpreted by Allen relations or combinations of Allen
relations. %I1,I2& is used to denote a convex interval set
in-between I1 and I2. The formal definition of %I1,I2& can
be found in equation (14). Moreover, two parallel lines can
be dragged in a or 2a angle with the horizontal axis, in
order to select intervals that starts-within or ends-within a
certain interval (e.g. Figure 11b and c). starts-within (I1) is
defined as a set of intervals whose starts are in I1

(equation (15)). Analogously, ends-within (I1) is defined
as a set of intervals whose ends are in I1 (equation (16)).
Though the starts-within and ends-within can be expressed
by unions of Allen relations, we design such query tools for
people that are more accustomed to the expressions of
‘starts within’ and ‘ends within’ than unions of Allen
relations. Furthermore, by dragging a range along the
vertical axis, users can select intervals whose durations are in
a specific range (Figure 11d). In GeoTM, all queries are
carried out with respect to pre-defined probability thresh-
olds. In the examples in Figure 11, the lower threshold is

Figure 9. The user interface of GeoTM, consisting of a map view (left) and a TM view (right)
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set to 0.6 and the upper threshold is set to 1, meaning that
the selected intervals have more than 60% probability of
satisfying these queries.

%I1,I2&:fI jmin(I {
1 ,I {

2 )vI {

vmax(I {
1 ,I {

2 ) ^min(I z
1 ,I z

2 )vI z
vmax(I z

1 ,I z
2 )g

(14)

starts-within(I1):fI jI {
1 vI {

vI z
1 g (15)

ends-within(I1):fI jI {
1 vI z

vI z
1 g (16)

Based on equation (13), when a temporal query is defined, users
may obtain the probability that a given number of intervals satisfy
this query. For example, GeoTM can return the probabilities that
a certain number of intervals are before [1915/11/21, 1916/
08/30]. In this case, 67 rough approximations have common
parts with (intersect or within) the query zone, while 43 out of
these 67 rough approximations are totally within the query zone.
This means that there are minimum 43 intervals before [1915/
11/21, 1916/08/30] and maximum 67 intervals before [1915/
11/21, 1916/08/30]. The probability that n intervals
(43,n,67) are before [1915/11/21, 1916/08/30] is between
0 and 1. GeoTM can automatically generate the probability that
n intervals are before [1915/11/21, 1916/08/30], from n543
to n567 (Figure 12). In this way, one can know how many
intervals satisfy the query, with respect to a confidence level.
According to Figure 12, there are 59 intervals before [1915/11/
21, 1916/08/30], at 0.9 confidence level. This function is also
useful in distinguishing ‘real clusters’ and ‘fake clusters’ of
intervals. Because the colours in TM represent the number of
overlaps, which is actually the maximum number of intervals
within the area, an area with a darker colour indicates a potential
cluster of intervals. However, the probability that intervals are

clustered in this area varies. By dragging a query zone over the
dark area, one can be aware of the numbers of intervals clustered
in this area with respect to specific probabilities.

CASE STUDY

Having introduced basic functionalities of GeoTM in the
previous section, this section will illustrate the use of TM in
supporting GIS for ESTDA by means of a case study.

Dataset

During WWI, a large number of aerial photos in West-
Flanders (Belgium) were taken at discrete time stamps by all
combating nations as an intelligent tool to collect informa-
tion on the enemy’s intentions. These aerial photographs
are preserved in archives all over the world. The largest
collections are held at the Belgian Royal Army Museum, the
Imperial War Museum, the Australian War Memorial and
the Bavarian Military archive. From these aerial photos, one
can observe whether a military feature (e.g. a fire trench,
gun position or barrack) was not yet present, present, or
destroyed (Stichelbaut and Bourgeois, 2009). Although the
state of a feature is uncertain between two snapshots, we
assume that it does not change between two snapshots
which show similar states. Thus, the uncertainty only exists
between two snapshots showing different states. Certainly,
this assumption relies on our knowledge that snapshots are
dense enough to capture most of features’ changes. When
more volatile entities are considered, an appropriate
temporal resolution will be required. In this context, rough
sets are excellently suited for temporal modelling, because
no knowledge is available about the state of a feature
between two snapshots. Thus, we can consider a period of

Figure 10. The selection of intervals probably before [1916/06/25, 1917/05/31], with more than 60% probability: (a) moving the mouse
cursor to the interval [1916/06/25, 1917/05/31], and right-clicking to trigger the menu of Allen relations, and then right-clicking the
‘before’ option, (b) intervals that are probably before [1916/6/25,1917/5/31] are selected
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snapshots showing similar states as the lower approxima-
tion, its neighbouring uncertain intervals as boundary
regions, and all of them form the upper approximation
(Figure 13). Thus, a feature’s lifetime can be meaningfully
represented by a rough approximation.

More specifically, four photos determine the lifetime of a
feature (Figure 13): (1) the last photo in which the feature
is not yet present; (2) the first photo in which the feature is
present; (3) the last photo in which the feature is present;
and (4) the first photo in which the feature is destroyed or
abandoned. The interval between the dates of photos (2)
and (3) is the lower approximation of the feature’s lifetime,
while the interval between the dates of photo (1) and photo
(4) is the upper approximation. Intervals between the dates
of photos (1) and (2), and intervals between the dates of
photos (3) and (4) are the boundary regions, which indicate
respectively the range of the feature’s construction and

destruction/abandonment dates. There are a few excep-
tions, where a feature was not yet present in one photo and
already destroyed in the following photo. In these cases,
photos (2) and (3) are missing, and therefore the rough
approximation has an empty lower approximation. As
described in the Section on ‘Representation of rough
approximation’, such rough approximations are represented
as triangles on the horizontal axis. In this case study, a
rectangular area (around 363.5 km) is selected near Ypres
(Belgium) as the study area, containing 2466 military
features (Figure 14). This study area near Ypres is one of
the most important battlefields of WWI. From 1914 to
1918, there was constant artillery fighting going on. And
more importantly, Ypres was the scene of several large
offensive actions by both Germans and Allies. Therefore, it
is an ideal area to test the potential of TM in exploratory
analysis.

Figure 11. Making temporal queries by dragging geometries in the triangular model (TM) view: (a) selecting intervals in-between [1915/10/
01, 1918/04/20] and [1916/05/10, 1917/09/10], (b) selecting intervals that start-within [1915/04/01, 1915/10/20], (c) selecting inter-
vals that end-within [1916/06/01, 1917/04/01], (d) selecting intervals that are longer than 2 years and shorter than 3 years
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For analysis, we also take account of spatio-temporal
information of the frontlines during the war. There are 11
snapshots of the states of the German and Allied frontlines
during WWI. From these snapshots, we have observed that
the frontlines were stable in I2 [1915/5/25, 1916/6/14]
(we format a date as year/month/date), but had significant
shifts in three time intervals, i.e. I1 [1915/5/23, 1915/5/
25], I3 [1916/6/14, 1917/10/1] and I4 [1917/10/1,
1918/4/15] (Figure 15). Note that the frontline shifts in
I3 and I4 might only take a few days. But from snapshots of
frontlines, it is only known that the shifts happened in these
three intervals and the exact dates of the shifts are
unavailable. Figure 15 displays the locations and shifts of
frontlines in these four intervals. Note that the German
army was always on the east side of the Allied army. If the
positions of frontlines were out of the study area, such as in
I3 and I4, we use arrows to indicate the direction of the
shifts.

Analysing rough time intervals in GeoTM

First, the dataset of the military features is imported to
GeoTM. The spatial locations of these features are displayed
in the map view, while the rough approximations of their
intervals are displayed in the TM view (Figure 16). To
identify the intervals of frontline shifts, the interval points
and during zones of I1, I2, I3 and I4 are added to the TM
view (Figure 16). The zone with solid boundary is the
during zone of the interval in which the frontlines were
stable, i.e. I2, while the zones with dashed boundaries are
the during zones of the intervals in which the frontlines had

significant shifts, i.e. I1, I3, and I4. As I1 is very short, its
during zone is invisible in this scale. Using the selection
tool, we find that 99% of features (2433 out of 2466) in the
study area were built after I1. Considering the frontline shift
in I1, we can infer that the major military activities in the
study area started after I1 when the frontline moved from
the edge of the study area to the centre. Three dark areas
that indicate potential clusters of intervals can be observed
in TM (Figure 16). In the next three sub-sections, these
potential clusters will be analysed with respect to frontline
states in I2, I3 and I4. Note that in the following three sub-
sections, we set the lower probability threshold of all
temporal queries as 0.9 and the upper probability threshold
as 1, in order to select intervals that satisfy the query with
more than 90% probability.

Stable period of frontlines

Most intervals in Cluster 1 and Cluster 2 start-within I2,
when the frontlines were relatively stable. When select-
ing intervals probably start-within I2 (more than 0.9

Figure 12. The line diagram of probabilities that at least n inter-
vals are before [1915/11/21, 1916/08/30]

Figure 13. The rough approximation of the lifetime of a military feature

Figure 14. The location of the study area
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Figure 15. The states of German and Allied frontlines in World War I. The map in the solid box shows the period during which the fron-
tlines were relatively stable, while the maps in the dashed boxes show periods during which the frontlines had significantly shifted
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Figure 16. The rough approximations of the feature lifetimes in the triangular model view, with the during zones of I1, I2, I3 and I4 displayed

Figure 17. The selection of intervals that end-within I2
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probability), we obtain 1531 intervals (62% of all features in
the study area), which reflects that a majority of military
features were constructed during this stable period. There
are also some intervals that end-within I2, which are
lifetimes of features that were destroyed within I2. By
selecting intervals that end-within I2, we obtained 200
intervals (8% of all features) and the map view shows that all
these features were close to the frontlines (Figure 17). This
is reasonable because military features close to the frontline
were easier to be destroyed by artillery attacks or minor
offensives. Therefore, it can be inferred that during I2 there
were no significant military actions, and the armies at both
sides were building military features in order to keep their
positions. Only a small portion of features close to the
frontlines were destroyed.

Shift of frontlines in I3

During I3, the frontlines shifted from their positions to the
east of the study area, towards the German side. In the TM
view, it is observable that the intervals in Cluster 2 end-
within I3. More specifically, the intervals in Cluster 2 end-
within a quite short interval [1917/07/10, 1917/08/01],
which results in a slim shape (see Cluster 2 in Figure 16).
When selecting intervals that end-within [1917/07/10,
1917/08/01], we obtain 1050 features, which is 43% of all
features (2466 features) in the study area. This finding
reflects that a large number of features were intensively
destroyed during [1917/07/10, 1917/08/01]. The map

view shows that all these features were distributed in the
eastern side of the old frontlines, which were earlier
occupied by the German army (Figure 18). By checking
the attribute table, one can see that 99% of these 1050
features were German features, which was 83% of all
German features (1260 features) in the study area. With
these findings, it becomes possible to infer, without
consulting any historical documents, that an overwhelming
and intensive destruction happened to German features in
July 1917 in the study area. Probably due to this
destruction, the German army lost its area and was pushed
to the east. Referring to historical literature (Barton, 2005;
Verbeke, 2006), these findings reflect the fact that during
this period, the Allies intensively destroyed German features
using artillery fire, in a battle which became known as the
Third Battle of Ypres. During the battle, Allied army took
Passchendaele (Belgium), pushing the frontline towards the
east.

Shift of frontlines in I4

Through observation in the TM view, most intervals in
Cluster 1 and Cluster 3 end-within I4. When selecting
intervals probably end-within I4 (with more than 90%
probability), 817 features are obtained and the attribute
table shows that all these features are Allied. This means
that 68% Allied features (817 out of 1206) in the study area
were probably destroyed within I4. Considering that within
I4 the frontlines have moved from east to west towards the

Figure 18. The selection of intervals that end-within [1917/7/10, 1917/8/1]
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Allied side, it is straightforward to infer that these features
were destroyed due to the offensive by the German army.
Features in Cluster 1 were built earlier (i.e. during I2),
when the frontlines were relatively stable. By selecting
features in Cluster 1, one can see that these features are
mostly located in the eastern part of the study area, which
was occupied by the Allied army during I2. Features in
Cluster 3 were built later (i.e. during I4), and were evenly
distributed over the entire study area (Figure 19). These
findings reveal that after the Third Battle of Ypres, the
Allied army controlled the whole study area and built
military features over the area (i.e. features in Cluster 3).
Later on, the German army attacked back and destroyed all
Allied features (features in both Cluster 1 and Cluster 3) in
the study area. After this military action, the frontlines
shifted from the east of the study area to the west of the
study area. Known from historical literatures (Howard,
2002), these findings probably reflect the Battle of Lys (a
part of Spring Offensives of Germany) in April 1918,
during which the German army attacked the Allied army
and pushed the frontline back to the west.

CONCLUSIONS AND FUTURE WORK

This paper has investigated the use of TM in visualizing and
analysing time intervals modelled by rough sets. Compared
with the fuzzy set approach, the rough set approach is
excellently suited to imperfect time intervals with no prior

knowledge and assumptions about the distribution of their
starts and ends, which broadly exist in discrete data
acquisitions. In TM, rough approximations of intervals are
represented as polygons in a 2D space. We contend that this
representation is advantageous in visualizing the distribu-
tion of imperfect time intervals, because the patterns (e.g.
clusters) in the distribution can be explicitly displayed. If an
interval is described by rough approximation, its relation
with other intervals may have uncertainties. Due to these
uncertainties, temporal queries may generate uncertain
answers. Therefore, we have proposed a probabilistic
framework to model uncertainties in temporal relations of
roughly described intervals. Since TM represents temporal
relations as 2D geometries, the probability of temporal
relations can be expressed by the overlap rate of the
corresponding geometries, which is analogous to Venn
diagrams. Compared with mathematical expressions, such
graphical representation is potentially more intuitive to
human beings and can offer a promising basis for visual
temporal queries.

In order to evaluate the capabilities of TM, we have
implemented it into a prototype tool (i.e. GeoTM) which
incorporates TM within a GIS. GeoTM shows that the
advantages of TM in visualisation and querying can be
better exploited when it is implemented in a computer
program. Instead of providing a static TM visualisation,
GeoTM supports interactive functionalities that enable
flexible manipulations of the TM display. These function-
alities have potential of assisting visual observation and

Figure 19. The selection of intervals in Cluster 3
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pattern detections. Besides visualisation, GeoTM also offers
possibilities to make temporal queries by creating 2D
geometries. Whether intervals satisfy the query depends on
the extent to which the intervals are part of the query zone.
Moreover, query zones can be directly created on top of the
visualisation of intervals so that users can select an observed
cluster of intervals by designing a proper temporal query. In
order to handle the uncertainties in temporal relations of
roughly described intervals, special functions based on the
proposed probabilistic framework have been applied in
GeoTM, allowing users to make temporal queries with
consideration of probabilities. On the one hand, temporal
queries can be defined with probability thresholds, which
ensure that every retrieved interval satisfies the query in a
certain probability. On the other hand, once a query is made,
GeoTM can return the probability that a certain number of
intervals satisfy the query. With this feature, users can be
aware of how many intervals satisfy the query, with respect to
a certain confidence level. With these functionalities, GeoTM
is able to support ESTDA of geographical entities with
reference to roughly described intervals. As shown in the case
study of WWI features, GeoTM can be used to explore the
military features from spatial, temporal and attribute aspects.
From the detected patterns and clusters, users can discover
interesting phenomena in the war without consulting
historical literatures.

Not only spatio-temporal data, we believe that TM can
be applied in other contexts that involve roughly described
intervals for purposes of information visualisation, explora-
tory analysis and data mining. In future work, the
applicability of TM needs to be further assessed by more
use cases, preferably covering different research contexts.
Also, future extensions will improve the usability and
interactivity of the implementation. Before the implemen-
tation is released to a broader community, its scalability
needs to be systematically evaluated. Furthermore, we plan
to investigate the possibility of representing and analysing
fuzzy time interval by TM. The fuzzy set approach is more
suitable for modelling imperfect time intervals when
assumptions or knowledge of the distributions of starting
points and end points are available. This extension may rely
on the application of more advanced visualisation techni-
ques such as 3D visualisation.
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Symbols Name of symbols Examples

I A crisp time interval
I 2 The start of I
Iz The end of I
dur(I) The duration of I
mid(I) The midpoint of I
I The interval space, i.e. the universal set

that contains all time intervals
�II The upper approximation of I
I The lower approximation of I
�II{

The start of �II
�IIz

The end of �II
I{

The start of I
Iz The end of I
R(I) The rough approximation of I
R(I 2) The earlier boundary region or the rough start of I
R(Iz) The later boundary region or the rough end of I
fx(x) The probability density function of X fl{ xð Þ is the probability density function of I 2.
P(X) The probability that the statement X is true P(I151) denotes the probability that I15I is true.
|A| The cardinality of the set A, i.e.

the total number of elements in A. A can be
a set of real numbers or a set of intervals.

|R(I)| denotes the cardinality of R(I).

Rel(I) A relational zone of I or the set of intervals
that are in a certain relation to I.

before(I) is the before zone of I and denotes the set
of intervals that are before I.

Rel(I1,I2) The statement that I1 and I2 are in a certain relation. overlaps(I1,I2) expresses the statement that I1 overlaps I2.
%I1,I2& The set of intervals that are in-between I1 and I2. The formal definition of in-between can be found

in equation (14)

APPENDIX: THE SUMMARY OF NOTATIONS USED IN THE MANUSCRIPT
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