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The impact of Hurricane Katrina on urban growth in
Louisiana: an analysis using data mining and simulation
approaches
Yi Qiang and Nina S.-N. Lam

Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA

ABSTRACT
Understanding human dynamics after a major disaster is impor-
tant to the region’s sustainable development. This study utilized
land cover data to examine how Hurricane Katrina has affected the
urban growth pattern in the Mississippi Delta in Louisiana. The
study analyzed land cover changes from non-urban to urban in
three metropolitan areas, Baton Rouge, New Orleans-Metairie, and
Hammond, for two time periods, pre-Katrina (2001–2006) and
post-Katrina (2006–2010). The study first applied a focal filter to
extract continuous urban areas from the scattered urban pixels in
the original remote sensing images. Statistical analyses were
applied to develop initial functions between urban growth prob-
ability and several driving factors. A genetic algorithm was then
used to calibrate the transition function, and cellular automata
simulation based on the transition function was conducted to
evaluate future urban growth patterns with and without the
impact of Hurricane Katrina. The results show that elevation has
become a much more important factor after Hurricane Katrina,
and urban growth has shifted to higher elevation regions. The
elevation most probable for new urban growth increased from
10.84 to 11.90 meters. Moreover, simulated future urban growth in
this region indicates a decentralized trend, with more growth
occurring in more distant regions with higher elevation. In the
New Orleans metropolitan area, urban growth will continue to spill
across Lake Pontchartrain to the satellite towns that are more than
50 minutes away by driving from the city center.

ARTICLE HISTORY
Received 15 July 2015
Accepted 15 January 2016

KEYWORDS
Mississippi delta; coupled
natural-human dynamics;
cellular automata; genetic
algorithm; Hurricane Katrina;
coastal sustainability

1. Introduction

Due to the rich natural resources, convenient transportation, and high recreational
value, the coast tends to attract more people than the inland areas. According to the
2010 Census data, 39% of the total population in the United States is living in counties
directly on the shoreline and the population density in these coastal counties is more
than four times the average population density of the whole United States (U.S. Census
Bureau 2011). In recent years, increasing attention has been paid to coastal regions due
to their high exposure and vulnerability to natural hazards. A critical challenge facing
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these vulnerable coastal regions is how to cope with these threats and achieve sustain-
ability especially under the threat of climate change and sea level rise. Understanding
the issue of sustainability in the coastal regions requires systematic and thorough
analyses of how the human and natural systems interact. As one of the most important
indicators of the processes on the earth surface, land cover changes manifest the
dynamic interactions between human and natural systems that lead to the alteration
of the landscape. Thus, analyzing land cover changes could provide useful insights into
the sustainability issue in the coastal regions (Bajocco et al. 2012, Mendoza-González
et al. 2012, Qiang and Lam 2015). In particular, urban growth patterns derived from land
cover data can indicate the spatial and temporal variations of human dynamics that may
affect a region’s long-term sustainability. Modeling urban growth using observable land
cover data can help identify the factors that influence sustainability and guide appro-
priate planning and policy-making (Mahiny and Clarke 2012).

Like most other deltaic regions in the world, the Mississippi Delta has been facing
both large-scale, rapid-moving disturbances such as hurricanes and storm surges, and
chronic, slow-moving processes such as land subsidence, sea level rise, and the gradual
reduction of key ecosystem services. In particular, significant land loss over the years has
threatened the low-elevation areas in the region, prompting the question of whether
the low-lying deltaic region is sustainable given the impending threat of sea level rise
(Lam et al. 2009a). On the other hand, during the last decade (2000–2010) there was a
steady population growth in the northern part of the region, which is of higher eleva-
tion, in contrast with a decline in the southern part where most areas are near or below
sea level. This contrasting pattern of population growth and decline between the North
and the South may have been accelerated after the strike of Hurricane Katrina in August
2005 (Lam et al. 2009b, 2012). The main research questions posted in this study are: how
has Hurricane Katrina affected the region in terms of human migration and relocation,
what are the factors affecting such human dynamics, and what would the future trend
look like under different scenarios?

The goal of this study is to evaluate the impact of Hurricane Katrina on human
dynamics in the Mississippi Delta in Louisiana, and to answer the research questions
posted above. Unlike the typical studies on human dynamics that focus on individual
people movement, this study takes a broad view of human dynamics and examines the
cumulated effects of human dynamical activities through a time series of remotely
sensed data. We hypothesize that people and businesses became more aware of the
factor of elevation and coastal vulnerability after Hurricane Katrina, and they responded
by relocating to a nearby region that has higher elevation, which resulted in more urban
growth in the northern part of the Mississippi Delta. Such transformation of urban
growth pattern reflects human response to natural disasters, which can help us under-
stand the dynamic interactions between human and the changing environment. The
findings from this study should increase our understanding of the factors affecting the
long-term sustainability in this vulnerable coastal region, as well as other similar deltaic
regions in the world. The information will also help decision-makers to better plan for
the region especially under the threat of climate change and sea-level rise.

However, the research questions posed are complex and addressing them requires a
number of spatial analytical methods. This study demonstrates the use of land cover
change data to detect the long-term human dynamics in response to a major disaster in
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a vulnerable coastal region. Specifically, the study uses land cover change data before
and after Katrina to analyze and model urban growth in three metropolitan areas in the
Mississippi Delta region (Figure 1). Urban growth in this study refers to a pixel changing
from non-urban to urban land cover in a timeframe. First, a smoothing filter is applied to
the original land use and land cover data to eliminate noise and detect the general
trend. Second, statistical analysis is conducted to examine the relationships between
urban growth probability and a number of variables. The difference in statistical relation-
ships before and after Katrina is analyzed. These relationships are then combined into a
transition function to model the integrated effect of the variables on urban growth
probability. Third, the statistical function is further calibrated by a genetic algorithm
(GA). Fourth, the calibrated GA function is applied into a cellular automaton (CA) to
simulate urban growth with and without the impact of Katrina. Urban growth patterns
and relationships with other variables are then compared between these two periods,
aiming to uncover the impact of Hurricane Katrina on urban development in this region.

2. Related work

A considerable amount of work has been conducted in modeling land cover change in
general and urban growth in particular. Urban growth is considered a complex and non-
linear process driven dynamically by many forces interacting with the surrounding
environment. Cellular automata (CA) models, which can be used to dynamically update
the status of land cells according to both global forces and local neighborhood condi-
tions, have become the most frequently used spatial modeling framework for urban
growth (Clarke et al. 1997, 2007, Batty 2007, Schweitzer et al. 2011). Moreover, due to its
spatial nature, CA can be easily built on raster data and implemented in a geographical

Figure 1. Study area.
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information system for further display and analysis (Couclelis 1997, Wagner 1997). In CA
modeling, the key challenge is on the derivation of implementable and credible rules to
model how the driving forces influence urban growth. In the early years, the transitional
rules are developed from expert experience and are manually calibrated by visual
comparison between simulated and test sets (Ward et al. 2000), which is labor intensive
and error-prone. Later, statistical methods such as logistic regression (Wu and Webster
1998, Sui and Zeng 2001) and principal components analysis (Li and Yeh 2002) are used
to derive and quantify the relative importance of different variables to urban growth.
However, these statistical approaches have inherent weaknesses in handling complex
relations and interdependent variables.

To analyze the complex relationships, a variety of data mining techniques have been
applied to calibrate the transition rules of land cover change and urban growth.
Heuristic algorithms have been used to automatically generate or calibrate functions
to describe the non-linear and complex transition functions, which have yielded higher
accuracy in urban growth calibration (Lin et al. 2011). Based on their explanatory ability,
these data mining techniques can be classified into either black-box or white-box
approach. The former includes artificial neural networks (Li and Yeh 2001, Qiang and
Lam 2015) and support vector machines (Yang et al. 2008), which can build functions
from ground zero but lack transparency on the mechanism that transfers the input into
output. The white-box approach includes methods such as genetic algorithms (Stewart
et al. 2004), simulated annealing (Feng and Liu 2013), and ant colony optimization (Liu
et al. 2012), which are used to calibrate the parameters of the transition function that
explicitly describes the relationships between urban growth probability and individual
variables. Although the white-box approaches are more useful for explaining the urban
growth mechanism, they require an initial transition function, which is generally derived
from prior knowledge. In urban growth modeling, a transition function usually includes
a growth suitability component, which is a linear combination of a number of global
forces that drives urban growth, and a neighborhood component, which models the
effect of the local neighborhood (Wu 2002, Li et al. 2007, Feng and Liu 2013, García et al.
2013). Although this form of function has been widely adopted in urban growth
modeling (Li et al. 2007, Feng and Liu 2013, García et al. 2013), in some cases appro-
priate transformations are needed to describe the complex (e.g. non-monotonous) and
heterogeneous relationships between variables and urban growth suitability. In this
study, instead of linearly combining the variables, different statistical functions are
applied to examine the relationships between urban growth probability and variables.
Then, a genetic algorithm, a non-linear data mining technique, is applied to fine-tune
the relationships between variables and urban growth probability.

3. Study area and data

3.1. Study area

The study area consists of three adjacent metropolitan statistical areas (MSAs) located in
the Mississippi Delta in southeastern Louisiana, including Baton Rouge, New Orleans-
Metairie, and Hammond (Figure 1). The MSAs are delineated by the United States Office
of Management and Budget (OMB). An MSA is one or more adjacent counties in which
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at least one urban core area has a population of at least 50,000. Adjacent counties are
included in an MSA if they have a high degree of social and economic integration as
measured by commuting to work. The three MSAs in this study occupy 15% of the total
Louisiana land area and have 47% of Louisiana’s population, which is the most urba-
nized area in Louisiana. The Baton Rouge and New Orleans-Metairie MSAs are the two
largest urban concentrations in Louisiana. Hammond MSA, located between Baton
Rouge and New Orleans-Metairie, was newly added to the MSA list due to its high
population growth in the past decades. The inclusion of Hammond is necessary as it
provides a continuum between Baton Rouge and New Orleans. Also, it may offer an
alternative urban growth location because of its higher elevation and its proximity to
New Orleans. Table 1 shows the populations, population changes between 2001 and
2010, and the average elevation of the three MSAs. Baton Rouge and New Orleans-
Metairie are located in very different natural landscapes and have diverse socioeconomic
structures. New Orleans-Metairie MSA is near the Gulf coast and Lake Pontchartrain and
has an average elevation of 3 meters (m) above sea level, whereas Baton Rouge MSA is
located farther inland at the tip of the Mississippi River Delta and has an average
elevation of 22.8 m above sea level. New Orleans is the largest city and is deemed as
the commercial center in Louisiana, while Baton Rouge is the state capital that has
stronger governance and administrative functions. The southern area near New Orleans
is considered highly vulnerable to coastal hazards, including land subsidence, flooding,
oil spills, and hurricanes (Lam et al. 2009a, 2009b, 2012). As Table 1 shows, population of
the New Orleans-Metairie MSA has declined 10.5% between 2001 and 2010, while the
population of the other two MSAs has increased 13.3% and 19.6%, respectively.

3.2. Urban growth

The LULC data of the study area were obtained from NOAA Coastal Service Center under
the Coastal Change Analysis Program (C-CAP). These data were classified from Landsat-5
Thematic Mapper (TM) images through extensive field sampling, validation, and stan-
dard quality-control review procedures, which have guaranteed high classification accu-
racy and consistency (Dobson et al. 1995). The spatial resolution of these data is 30 m by
30 m. The C-CAP data use the USGS classification scheme (Anderson et al. 1976), which
includes seven LULC classes in the study area, including urban, agriculture, rangeland,
forest, water, wetland, and barren. For this study, the C-CAP land cover data were
reclassified into urban (urban in the original classification) and non-urban (all other
types). There are 26,778,265 pixels in the study area.

The resulting urban and non-urban classification shows a very fragmented and
scattered pattern in the study area, particularly in the low-density urban area
(Figure 2a). Instead of using the urban raster at the original 30 × 30 m pixel resolution,

Table 1. Population changes and elevation of the three MSAs in the study area.

Metropolitan statistical area 2001 population 2010 population
Population change

(2001–2010) Avg. elevation (meter)

New Orleans-Metairie, LA 1,311,062 1,173,572 −10.5% 3.11
Baton Rouge, LA 709,897 804,568 13.3% 22.82
Hammond, LA 101,541 121,460 19.6% 34.89
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a focal filter was applied to smooth out the scattered urban pixels. The focal filter
searches for a circle area with a 33-cell (990 m) radius. The central pixel is defined as a
continuous urban pixel if more than half of the pixels within the search area are urban
(Figure 2b). The rationale of applying a focal filter and the criterion to define continuous
urban pixel are based on the following. First, applying a focal filter helps in eliminating
noise and identifying the general trend of urban growth and its relationships with other
variables especially for a large study area like this study. This practice of smoothing is
similar to the common practice of applying a smoothing filter after spectral image
classification to reduce the salt-and-pepper effect (Lillesand et al. 2015). Through
smoothing, a more continuous urban expansion emerges. Factors of local interactions
are expected to be less important, whereas factors of broader-scale urban expansion
may be more readily revealed, which would help in the modeling and simulation in this
study. Second, the rule that a pixel is considered urban if more than half of the pixels in
the filter are urban is similar to the majority rule commonly used in image processing.
Third, modeling with the filtered urban area can significantly reduce the computational
time needed for urban growth modeling for a large study area like this study. In the
remainder of this article, urban pixels refer to the continuous urban pixels after the filter.
Currently, NOAA has published C-CAP LULC data covering the study area at four time
points, including 1996, 2001, 2006, and 2010. This study focuses on the urban growth
during the two most recent time intervals, 2001–2006 and 2006–2010, which can be
considered approximately as pre- and post-Katrina periods.

3.3. Variable selection

Urban growth is a complex phenomenon and it depends on numerous factors, which
may vary across space and time and at different scales (Verburg et al. 2004). For
example, the factors of urban growth of a developed country can be very different
from those of a developing country. Also, some factors that are significant at a local
scale may not be significant at a regional scale. In this study, the variables selected for
the modeling are based on the literature on urban growth modeling (Wu 2002, Batty

Figure 2. A comparison between the original urban raster (a) and filtered urban raster (b).
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2007, Li et al. 2007, Feng et al. 2011) and our hypothesis, which is guided by the
literature in coastal vulnerability, resilience, and natural and human dynamics (Lam
et al. 2009b, 2012, 2015, Qiang and Lam 2015). We hypothesize that people and
businesses became more aware of the factor of elevation and coastal vulnerability
after Hurricane Katrina, and they responded by relocating to a nearby region that has
higher elevation. After preliminary testing with a number of variables that have potential
effects on urban growth, three variables – distance to city cores, elevation, and proximity
to primary roads – were identified as having significant relationship to the urban growth
probability in this region.

3.3.1. Attractiveness of major cities
Most cities tend to grow in an agglomerative manner to take advantages of the high
concentration of resources, labor, and capital in the city center. This tendency results in a
sprawling growth pattern which can be observed in major cities around the world (Batty
et al. 2003). There is a general trend that urban growth is more likely to occur near the
urban cores. Following the gravity model in geography, an urban core can be consid-
ered as the gravity center that attracts new urban development in the surrounding area,
and such attractiveness gradually decays in space. In the study area, the two largest
cities, Baton Rouge and New Orleans, can be considered as the gravity centers that have
high population and economic concentration. Because of their different geographical
locations, the urban growth patterns around these two cities can be used to reflect the
impact of coastal hazards on the sustainability of the two metropolitan areas.

The study area is located in a coastal region with diverse landscapes where urban
growth is constrained by the landscape, and place connectivity is strongly dependent on
the road network. Places that look close to each other in terms of straight-line distance
may not be easily accessible to each other due to the lack of direct road connection. In
this study, traveling time in the road network is a better metric than the straight-line
distance in the Euclidean space. The road network is built from the road polylines
obtained from the Census Data using the Network Analyst toolbox in ArcGIS. Different
types of roads are assigned with different speeds, which is the average speed limit of the
road category. Given the road network, the traveling time between two points is the
traveling time through the fastest roads connecting these two points. Using this
approach, a raster map layer of traveling time was created for each city (Figure 3),
which represents the traveling time from each point to the city center. To simplify the
traveling time computation, the city centers are defined as the center points of the
urban area polygons defined in 2000 Census boundaries.

3.3.2. Other variables
Three additional variables that affect urban growth were included in this study. First,
elevation is an important factor that influences urban growth in coastal regions, parti-
cularly in the study area, where low-elevation regions are more vulnerable to coastal
hazards such as tropical storms, floods, and land loss. The elevation of the study area,
obtained from the USGS, was mosaicked from a large amount of LiDAR tiled data sets,
which provides a higher accuracy than the traditional DEM data in the National Elevation
Dataset of USGS. Then, the 1-meter resolution LiDAR data were resampled into a 30-
meter raster to be consistent with the cell size of the other data layers. Second,
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proximity to primary roads (category A1 and A2 in Census Feature Class Codes (CFCC)) is
considered another important factor of urban growth. A raster layer was created to
represent the distance from every pixel to the nearest primary road. Third, a constraint
layer was created to confine urban growth in certain land cover types. The criterion used
was that if more than half of the neighborhood pixels are water or wetland, the central
pixel will not convert to urban. To be consistent with the focal filter applied to smooth
the urban raster, the neighborhood used in the constraint layer was also a circle with a
33-cell radius.

4. Statistical analysis

To model urban growth, a transition function needs to be derived to quantify the
relationships between urban growth and the selected variables. In this study, urban
growth probability refers to the proportion of non-urban pixels that have converted to
urban during a time period. Note that the urban and non-urban pixels are from the
filtered images as explained in Section 3.2. Statistical analysis is conducted to fit these
relationships to appropriate functions. The combination of these functions will form the
baseline of the transition function, which will be further calibrated by a GA in the next
section. In this section, the relationships derived for the pre- and post-Katrina periods
are analyzed and compared. The comparison of these relationships will help uncover the
influence of Katrina to the urban growth pattern in the study area.

4.1 Attractiveness of major cities

Figure 4 illustrates the relationship between urban growth probability and traveling time
to the two major cities for the two periods. Both diagrams show a general tendency that
the less travel time between a pixel and the city center, the more likely that the pixel will
convert to urban. This tendency reflects the gravity model and the distance decay
principle in geography, which states that the interaction between two locations declines
as the distance between them increases. Such distance decay effect can be best fitted in
a power function (Equation 1),

Figure 3. Travel time to the urban cores of New Orleans and Baton Rouge.
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P xð Þ ¼ axtb (1)

where P xð Þ is the probability of pixel x converting to urban, xt is the traveling time from pixel
x to a city center, a is a constant representing the attractiveness of the city center, and b is
the distance decay parameter. Table 2 summarizes the parameter values of the four
probability functions before and after Katrina. By comparing the a and b parameters of
the travel time functions derived for the two periods, it can be observed that the trends of
urban growth around the two major cities have reversed. First, the parameter a in the
distance decay function of Baton Rouge has increased, which indicates an increase in the
central attractiveness of Baton Rouge for urban growth. In contrast, a in the function of New
Orleans has decreased, showing a declining central attractiveness of New Orleans for new
urban development. Second, the parameter b of Baton Rouge has increased considerably (in
a negativemanner) after Katrina, whichmeansmore concentrated urban development near
the city core, whereas parameter b in New Orleans has decreased, implying urban growth
around New Orleans becomes more spread out after Katrina. These contrasting trends
before and after Katrina as documented from the curves seem to agree with the empirical
observations of more population growth in areas outside of New Orleans.

4.2 Elevation

Figure 5 (left-hand side) shows the relationship between urban growth probability and
elevation before and after Katrina. Both time periods show that the elevation most

Figure 4. The relationship between urban growth probability and traveling time to city center.

Table 2. Parameters of probability functions derived for the two periods (2001–2006 and 2006–
2010).

Equations
Time
period a b c SSE R2 Adj. R2 RMSE

p-
value

Travel time to NOLA 2001–2006 2.946 −1.948 N/A 0.0011 0.93 0.9265 0.0073 0.001
(Equation 1) 2006–2010 2.024 −1.903 N/A 0.0023 0.7434 0.7306 0.0107 0.001
Travel time to BR 2001–2006 0.1466 −0.8735 N/A 0.000012 0.926 0.9223 0.0025 0.003
(Equation 1) 2006–2010 2.554 −1.657 N/A 0.000067 0.9774 0.9763 0.0058 0.000
Elevation 2001–2006 0.008903 10.84 13.22 1.99E-05 0.9158 0.9065 0.001052 0.000
(Equation 2) 2006–2010 0.01052 11.9 7.681 6.64E-06 0.9647 0.9607 0.000607 0.000
Distance to primary road 2001–2006 13.23 −0.9435 N/A 1.76E-05 0.9551 0.9526 0.000989 0.000
(Equation 3) 2006–2010 33.64 −1.086 N/A 1.27E-05 0.9633 0.9613 0.00084 0.000

Note: BR, Baton Rouge; NOLA, New Orleans.
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probable for urban growth is around 10 m. The trend lines in the two time periods
follow a bell shape, which can be fitted into a Gaussian function (Figure 6),

P xhð Þ ¼ a� exp � xh � bð Þ2
c

 !
(2)

where P xð Þ is the urban growth probability of pixel x,xh denotes its elevation. From the
two Gaussian functions for the two periods, we can observe that the center lines
(indicated by parameter b) have increased from 10.84 to 11.90 m, indicating that the
elevation most probable for urban growth increased by about 1 m (see Table 2). In
addition, the average elevation of urban growth increased from 6.56 m between 2001

Figure 5. Urban growth probability at different elevations (left) and proximity to primary road (right).

Figure 6. Gaussian curves fitted to the probabilities of urban growth at different elevations. The blue
and red lines are for pre- and post-Katrina period, respectively.
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and 2006 to 6.72 m between 2006 and 2010, which confirms that urban growth has
gradually moved to higher elevation regions. Figure 7 highlights the areas that have an
elevation within the 95% confidence intervals around the center lines of the two
Gaussian functions, showing that the areas most probable for urban growth have
moved northward from the coast to inland areas after Katrina. Moreover, the increase
in a and the decrease in c in the post-Katrina curve indicate that urban growth has
become more concentrated around the central elevation (11.90 m).

4.3 Proximity to primary roads

Figure 5 (right-hand side) plots urban growth probability against distance to primary
roads, which shows that the closer a pixel is to primary roads, the more likely it becomes
urban. This tendency also reflects the distance decay of transportation attractiveness.
Again, power functions (Equation 3) are used to fit these relationships:

P xð Þ ¼ axd
b (3)

where P xð Þ is the urban growth probability of pixel x; xd is the distance of pixel x to the
nearest primary road, a is a constant representing transportation attractiveness, and b is
the distance decay parameter.

5. GA calibration

The functions derived in the previous section provide the initial bivariate relationships
between urban growth probability and the three variables (elevation, city attractiveness,
and proximity to highways). It is noted that these functions could be over-determined

Figure 7. Areas with an elevation in the 95% confidence around the central lines of the two
Gaussian functions.
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by strong spatial autocorrelation. These functions can be combined into a transition
function to model the integrated effect of all variables on urban growth (Equation 4). In
the transition equation, we include the city attractiveness of both Baton Rouge α2 and
New Orleans α20 in the model, and assume that the attractiveness is proportional to the
population sizes of the two cities as represented by the parameter r. We also assume
that the city attractiveness decays in the same rate in space (hence same β2 for both
cities), and that any deviation from this assumption is due to the effects of other factors.
Based on these assumptions, Equation (4) can be transferred into Equation (5), which
includes four components added together and seven parameters to be calibrated:

P xð Þ ¼ α1 � exp � xh � β1ð Þ2
γ1

 !
þ α2 xtb

β2 þ α
0
2 xtn

β2 þ α3 xd
β3 (4)

P xð Þ ¼ α1 � exp � xh � β1ð Þ2
γ1

 !
þ α2 xtb

β2 þ rα2 xtnβ2 þ α3 xd
β3 (5)

In Equations (4) and (5), r ¼ PopulationNO
PopulationBR

, xh is the elevation, xtb is the traveling time to
Baton Rouge, xtn is the traveling time to New Orleans. For the seven parameters, αn
(n = 1, 2, or 3) is the constant of each variable, indicating the importance of the variable
to urban growth. β1 indicates the center line of the Gaussian curve which specifies the
relation between urban growth and elevation, while γ1 indicates the kurtosis of the
Gaussian curve. β2 and β3 describe the distance decay effects of the attractiveness of
cities and primary roads, respectively. Since the function includes diverse and non-linear
relationships, a genetic algorithm (GA) can be used to calibrate the parameters in the
function. GA is a heuristic algorithm that is inspired from the evolutionary ideas of
natural selection and genetics (Golberg 1989). GA is widely used to search for the best
solution to complex and non-linear problems. In GA optimization, candidate sets of
parameters are encoded as number strings, which are called chromosomes.
Chromosomes evolve generation by generation toward the best solution, with genetic
operators such as selection, reproduction, crossover, and mutation. GA optimization
terminates when the performance of the chromosomes does not improve further.
Then, the fittest chromosome is selected as the best solution to the problem.

In this study, the possible parameter sets of the transition function are encoded as GA
chromosomes. In each generation, the evolved chromosomes are applied in the transi-
tion function to predict pixels converted to urban. According to the calculated convert-
ing probability, a certain percentage of pixels would change to urban. The fitness of the
chromosome is evaluated according to the prediction accuracy. The chromosomes that
make less error in predictions are ranked higher in fitness. Based on the fitness ranking,
the chromosomes will go through the genetic operators and evolve to the next gen-
eration for further evaluation. After a number of generations when the average fitness of
the chromosomes does not further increase, the algorithm terminates and the fittest
chromosome is the optimal set of parameters for the transition function. Different from
the individual functions of urban growth probability derived in the previous section, the
output of this transition function is actually a relative ranking of probability that a pixel
converts to urban. The general process of the genetic algorithm calibration is illustrated
in Figure 8.
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Because less than 1% of pixels have converted to urban in each time period, the
sample of pixels used for the GA calibration needs to be rebalanced to ensure enough
changed pixels are included in the sample. Since more than 99% of urban growth occurs
within 3 kilometer (km) from the existing urban areas, the sample pixels were selected
within this range, including all changed pixels and an equal number of unchanged
pixels. Using this sampling approach, a total of 221,994 pixels and 182,295 pixels were
sampled for the two time periods, respectively. The GA calibration was conducted using
the optimization toolbox of Matlab 2015a. Default values were used for most options in
the GA toolbox, except population size and crossover function. After some trial runs, we
found that using a larger population (i.e., 500) and the heuristic crossover function can
improve the goodness of fit of the final solution. The optional settings of the GA
calibration are listed in Table 3. For detailed explanation of these options please refer
to the documentation of Matlab 2015a.

Five runs were carried out using the optional settings in Table 3, and each run
generated the best chromosome. The best chromosome in the five runs was selected
as the final parameters for the transition function. The same calibration procedure was
conducted for the two time periods, resulting in two sets of parameters that fit the
function (Table 4). After calibration, the transition function has reduced the prediction
error from 50% by guessing to less than 30%. When comparing the two time periods,
Table 4 shows that the importance of elevation (α1) has significantly increased in the
second period and the elevation most probable for urban growth (β1) has also

Figure 8. The workflow of GA calibration.

Table 3. The optional settings used for the GA calibration.
Option Value Option Value

Population size 500 Selection Stochastic uniform
Population type Double vector Mutation Uniform
Initial population range α1:[0 1] β1:[0 1] γ1:[0 1] α2:[0 1] β2:[−1 0] α3:

[0 1] β3:[−1 0]
Crossover function Heuristic (ratio: 1.2)

Reproduction ratio 0.05*Population size Mutation Gaussian
Crossover fraction 0.8 Stall generation 100
Stopping criteria Fittest chromosome does not improve for

100 generation
Function tolerance 0.0000001

Fitness scaling Rank of fitness Maximum generation 100*Population size
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increased. These changes generally match the equations derived in Section 4.2 (sta-
tistical analysis). In contrast, the importance of city attractiveness (α2) has declined,
and the attractiveness decays faster in space (β2), meaning that in the second period,
urban growth is more concentrated near urban centers. The importance of primary
road proximity (α3) has also decreased and urban growth becomes more spread out
(β3) from primary roads.

6. CA simulation

After calibration, the transition function is applied to cellular automata (CA) to
simulate future scenarios of urban growth. Since all urban growth occurs around
existing urban areas, it is natural to infer that urban pixels gradually extend from the
fringe of existing urban areas to farther areas. In general, the simulation follows three
rules. First, only fringe pixels (i.e., pixels adjacent to an urban pixel) can convert to
urban. Second, in the fringe pixels, the top half that have higher transition potential
are selected as candidate pixels for urban conversion. The transition potential is
calculated by the calibrated transition function derived from the GA (Section 5).
Third, each candidate pixel has a certain chance to convert to urban, which is
dependent on the number of urban pixels in the neighborhood. In addition, 1000
random non-fringe pixels (i.e., pixels not adjacent to an urban pixel) are allowed to
convert to urban in each iteration to represent new urban development that is
isolated from existing urban areas. Also, this process can be considered as a stochas-
tic component of the model, which allows the simulation of urban growth that
cannot be explained by the transitional function. The simulation terminates when
the total number of changed pixels has reached the development quota, which is the
product of average changed pixels per year in the previous period and the number
of years the simulation runs for. For example, if n pixels have changed per year
during the period 2006–2010, the 10-year simulation from 2010 to 2020 will termi-
nate when the total number of changed pixels has reached n × 10.

6.1. Validation

The performance of the transition functions needs to be validated before simulating future
scenarios. Pontius et al. (2004) summarized that a predictive land change model can be
validated by four general methods: (1) comparing the agreement between the prediction
map and referencemap; (2) comparing the predictivemodel with a Null model that predicts
pure persistence (no change); (3) comparing the predictive model with a Random model

Table 4. Optimal parameters derived from GA calibration for the two periods.
Elevation City attractiveness Dist. to highway Accuracy

Parameters α1 β1 γ1 α2 β2 α3 β3

Total
pixels

Error
predictions

Error
rate

2001–2006 1.14046 0.42588 0.04289 2.09734 −1.90265 2.31135 −0.57261 221994 64890 0.29231
2006–2010 3.50320 0.42591 0.13124 1.13776 −2.48992 1.71995 −0.44794 182295 47113 0.25844
Parameter
changes

↑ ↑ ↑ ↓ ↓ ↓ ↑
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that predicts change randomly across the landscape; (4) evaluating the goodness-of-fit at
multiple scales. In this study, we assessed the accuracy of the simulation model using the
first three methods. The validation of the model at multiple scales is beyond the scope of
this article and will be carried out in future research.

For the first assessment, Table 5 shows the pixel agreement between predicted and
actual urban growth in the two time periods in each category. The statistics for both
periods show that the model can accurately predict ~40% of the changed pixels in each
period. It is important to note that this prediction accuracy of changed pixels is different
from the prediction accuracy reported in conventional urban growth studies (Jenerette
and Wu 2001, Feng et al. 2011, Okwuashi et al. 2012), which compares the initial and
simulated pixel statuses using all changed and unchanged pixels. Such practice would
give a biased impression of accuracy because only a small portion of land pixels has
changed. This study reports the accuracy of the changed pixels only. There were less than
0.5% of pixels changed to urban during each time period, meaning that the prediction
accuracy by guess is less than 0.5%. The validation result indicates that the simulation
model can increase the prediction accuracy from 0.5% to ~40%. For the second and third
assessments, Table 6 shows that due to the small percentage of changed pixels in each
time period, there is not much difference in the overall prediction accuracy among the
proposed model, Null model, and Random model. However, the proposed model has
considerably outperformed the other two models in predicting the locations of changed
pixels. Furthermore, by visually comparing the simulated and actual urban growth in
Figure 9, we can observe that the simulation has largely captured the different urban
growth distributions in the two time periods. The figures show more urban growth in the
northern area versus limited urban growth around New Orleans in the south.

6.2. Simulation

The validation results show that the simulation model can capture the rules of
urban growth in the study area quite accurately. Using different transition functions

Table 5. Confusion matrix of simulated and actual urban growth of the two time periods.
Changed Unchanged Total

Simulated Change (2001–2006)
Actual change (2001–2006) Changed 45369 (39.72%) 66668 (0.25%) 112037 (0.42%)

Unchanged 68845 (60.28%) 26597383 (99.75%) 26666228 (99.58%)
Total 114214 (100%) 26664051 (100%) 26778265 (100%)

Simulated Change (2006–2010)
Actual change (2006–2010) Changed 40896 (43.60%) 51133 (0.19%) 92029 (0.34%)

Unchanged 52901 (56.40%) 26633335 (99.81%) 26686236 (99.66%)
Total 93797 (100%) 26684468 (100%) 26778265 (100%)

Table 6. The prediction accuracies of the proposed model, Null model, and Random model.
Accuracy of overall prediction Accuracy of change prediction

Proposed model Null model Random model Proposed model Null model Random model

Simulation
(2001–2006)

99.49% 99.58% 99.17% 39.72% 0.00% 0.44%

Simulation
(2006–2010)

99.61% 99.66% 99.32% 43.60% 0.00% 0.36%
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derived for the pre-Katrina and post-Katrina periods, we can simulate future scenar-
ios of urban growth to evaluate future urban growth with and without the occur-
rence of Hurricane Katrina. Figure 10 shows the simulated urban growth every
10 years from the initial status in 2010 using the two transition functions. The
simulation results show that if there was no Hurricane Katrina, more urban growth
would occur near Baton Rouge, and areas between Baton Rouge and New Orleans,
whereas with the occurrence of Katrina, urban growth would tend to concentrate
around the small towns along the north coast of Lake Pontchartrain. In other words,
the urban growth pattern without the impact of Katrina would be more evenly
distributed among the existing urban areas, whereas urban growth simulated with
the impact of Katrina would lead to more new urban development in higher
ground.

This trend can also be revealed through the plot of the relationship between the total
area of simulated urban growth in 2040 and the travel time to the two largest city cores
(Figure 11), which shows that more urban growth occurs at locations having longer
travel time to the city cores with the impact of Katrina. In other words, both Baton
Rouge and New Orleans MSAs exhibit a decentralizing trend of urban growth in the 30-
year simulation when using the post-Katrina function. New urban growth tends to occur
further from the city cores in the simulation. This trend is more prominent in the New
Orleans MSA where most urban growth will occur in areas with more than 50 minutes
(min) travel time to the city core in the next 30 years.

The simulation results reflect adequately the difference in transition rules derived
for the pre- and post-Katrina periods. Hurricane Katrina has made elevation a more
important factor for urban growth, and has prompted more urban development in
higher elevation areas. On the contrary, proximity to urban cores has become a less

Figure 9. The simulated and actual urban growth of the two periods.
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important factor. Since the urban core of New Orleans is mostly below 1-meter
elevation, the potential of urban growth near New Orleans is limited, and urban
growth in the New Orleans MSA will spill over across Lake Pontchartrain to the
northern higher-elevation region. Due to its higher elevation, proximity to the I-10

Figure 10. Simulation of future urban growth with pre- and post-Katrina transition functions.

Figure 11. Total area of urban growth in 2040 versus the travel time to the city cores.
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interstate highway, and reasonable proximity to New Orleans, the smaller towns
along the north coast of Lake Pontchartrain will be more attractive to future urban
growth.

The simulation results presented here assume that the previous trend will persist,
which may or may not be true. However, the model can be used to simulate future
trends by varying the assumption to develop scenarios such as decreasing elevation
to simulate the effects of sea-level rise on urban growth. In this study, the major
driving forces that we modeled are the three factors – elevation, distance to city
center, and distance to major roads. Given the hazard awareness and sea-level rise
threats, these factors are expected to continue to play a major role in urban growth
in the region.

7. Conclusion

This study examined how Hurricane Katrina has affected urban growth in coastal
Louisiana. It was hypothesized that people and businesses became more aware of the
factor of elevation and coastal vulnerability after Hurricane Katrina, and they responded
by relocating to a nearby region that has higher elevation. The study analyzed urban
growth in three MSAs, Baton Rouge, New Orleans-Metairie, and Hammond, for two time
periods, pre-Katrina (2001–2006) and post-Katrina (2006–2010). This study first applied a
focal filter to extract continuous urban areas from the scattered urban pixels in the
original remote sensing images. Statistical analyses were applied to determine the initial
forms of the transition function. A genetic algorithm was then used to calibrate the
transition function, and CA simulation based on the transition function was conducted
to evaluate future urban growth patterns with and without the impact of Hurricane
Katrina.

Major findings from this study show that elevation has become a much more
important factor after Hurricane Katrina, and urban growth has shifted to higher eleva-
tion regions. The elevation most probable for urban growth increased from 10.84 to
11.90 m. Moreover, future urban growth in this region was found to be more decen-
tralized from urban cores to more distant regions with higher elevation. Particularly in
New Orleans MSA, urban growth will continue to spill across Lake Pontchartrain to the
satellite towns that are more than 50 min away by driving from the city center. These
findings were based on land cover pixels of 30 m × 30 m but smoothed by a filter with a
radius of 33 cells (990 m). As a typical issue in geographical studies, scale and spatial
autocorrelation affect the findings, and analysis at a single scale cannot explain the
complete process of urban growth at all different scales (Lam et al. 2004, Lam 2012).
Hence, interpretations of the findings in this study are only valid at the specific scale
used. Future research should include a multiscale analysis to further validate the findings
obtained in this study.

The significance and implications of this study are three-fold. First, the study
contributes to the literature of human dynamics, urban growth modeling, and coastal
sustainability by demonstrating a methodology of using land cover change data to
detect, quantify, and simulate urban growth via a set of quantitative approaches.
Unlike the traditional land cover and urban growth modeling studies, this study
analyzed the change of urban growth pattern before and after Hurricane Katrina,
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which can indicate the impact of Hurricane Katrina on the population distribution in
the study area. While individual methods may not be new, the combined use of the
methods in analyzing urban growth and coastal vulnerability provides a useful
example for studies in other coastal regions and for other hazards. Traditional studies
on population migration and relocation are usually based on data of individual
people’s movement, which are difficult to acquire for a large area. Instead, this
methodology takes advantage of remotely sensed data to detect human dynamics
in response to coastal hazards, which is especially useful for studies of those regions
where population movement data are limited.

Second, although elevation has long been suspected to play a key role in urban
development in low-lying coastal regions, its effects have seldom been documented
quantitatively. This is especially true in the Mississippi Delta, where the effects of
elevation and coastal hazards on urban growth and population distribution have yet
to be studied and quantified. This study documents that the elevation that is most
probable of new urban growth has increased by approximately 1 m in the Mississippi
Delta region. More importantly, this study shows that elevation would not be considered
as important had there not been a major disastrous event such as Hurricane Katrina. To
the best of our knowledge, there were no central policies or planning guidelines applied
in this region to lead to this trend. The urban growth pattern uncovered in this study
reflects autonomic individuals’ response and adaptation to natural hazards, which can
indicate the resiliency and adaptive capacity of the coastal communities. The same
methodology can be applied to other low-lying deltaic regions to verify this finding or
compare the difference.

Last but not least, the simulated scenarios of future urban growth will serve as a
useful planning tool for sustainable development in this region. The decentralizing trend
of development identified from this study may lead to decentralized distribution of
capital, economy, employment, and resources in the urban system so that the impor-
tance of the original city core may gradually decline and new sub-cores may emerge in
high-elevation regions. The implications of these urban growth trends could be enor-
mous, and knowledge of these future trends will be needed for planning for a sustain-
able coast.
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